【Python】进阶学习:pandas--rename()用法详解

2024-03-05 08:52

本文主要是介绍【Python】进阶学习:pandas--rename()用法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】进阶学习:pandas-- rename()用法详解

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 📚 一、pandas中的rename()函数简介
  • 🛠️ 二、基本用法
    • 💡 示例1:重命名DataFrame的列标签
  • 📈 三、使用函数进行映射
    • 💡 示例2:使用函数重命名列标签
  • 🔄 四、重命名索引
    • 💡 示例3:重命名DataFrame的索引
  • 🔄 五、inplace参数的使用
    • 💡 示例4:直接在原始DataFrame上重命名
  • 🚫 六、注意事项和常见错误
  • 🤝 七、期待与你共同进步

📚 一、pandas中的rename()函数简介

  在pandas库中,rename()函数是一个非常实用的工具,用于重命名DataFrame或Series的索引和列标签。它提供了一种灵活的方式来修改数据集的标签,使得数据更加易于理解和处理。通过rename()函数,我们可以方便地对数据进行重命名操作,以满足不同的数据分析和处理需求。

🛠️ 二、基本用法

rename()函数的基本语法如下:

rename(mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None, errors='ignore')
  • mapper:一个函数,用于映射旧标签到新标签。
  • index:标签或标签列表,用于指定索引的新标签。
  • columns:标签或标签列表,用于指定列的新标签。
  • axis:指定要重命名的轴,0或’index’表示索引,1或’columns’表示列。
  • copy:布尔值,默认为True,表示是否创建原始数据的副本。
  • inplace:布尔值,默认为False,表示是否直接在原始数据上进行修改。
  • level:用于多层索引或列的多级标签的重命名。
  • errors:指定如何处理重命名时遇到的错误,默认为’ignore’。

💡 示例1:重命名DataFrame的列标签

import pandas as pd# 创建一个简单的DataFrame
df = pd.DataFrame({'old_name1': [1, 2, 3],'old_name2': [4, 5, 6],'old_name3': [7, 8, 9]
})# 使用rename()重命名列标签
df_renamed = df.rename(columns={'old_name1': 'new_name1', 'old_name2': 'new_name2'})print(df_renamed)

输出:

   new_name1  new_name2  old_name3
0          1          4          7
1          2          5          8
2          3          6          9

📈 三、使用函数进行映射

  rename()函数还可以接受一个函数作为mapper参数,该函数用于根据旧标签生成新标签。这种方式非常适合对标签进行批量处理或应用复杂的重命名逻辑。

💡 示例2:使用函数重命名列标签

import pandas as pd# 创建一个简单的DataFrame
df = pd.DataFrame({'old_name1': [1, 2, 3],'old_name2': [4, 5, 6],'old_name3': [7, 8, 9]
})# 定义一个函数,用于生成新标签
def rename_func(label):return label.replace('old', 'new')# 使用rename()和函数重命名列标签
df_renamed = df.rename(columns=rename_func)print(df_renamed)

输出:

   new_name1  new_name2  new_name3
0          1          4          7
1          2          5          8
2          3          6          9

🔄 四、重命名索引

  除了列标签,rename()函数还可以用于重命名DataFrame的索引。这对于需要对行标签进行特殊处理的场景非常有用。

💡 示例3:重命名DataFrame的索引

import pandas as pd# 创建一个简单的DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
}, index=['x', 'y', 'z'])# 使用rename()重命名索引
df_renamed = df.rename(index={'x': 'a', 'y': 'b'})print(df_renamed)

输出:

   A  B
a  1  4
b  2  5
z  3  6

🔄 五、inplace参数的使用

  inplace参数允许我们直接在原始DataFrame上进行修改,而无需创建副本。这可以节省内存并提高代码的执行效率。

💡 示例4:直接在原始DataFrame上重命名

import pandas as pd# 创建一个简单的DataFrame
df = pd.DataFrame({'old_name1': [1, 2, 3],'old_name2': [4, 5, 6]
})# 使用rename()并设置inplace=True直接在原始DataFrame上重命名
df.rename(columns={'old_name1': 'new_name1'}, inplace=True)print(df) # 由于inplace=True,原始DataFrame已经被修改

输出:

   new_name1  old_name2
0          1          4
1          2          5
2          3          6

🚫 六、注意事项和常见错误

  在使用rename()函数时,有一些常见的注意事项和可能遇到的错误:

  • 确保提供的映射关系是正确的,否则可能会导致重命名失败或产生不期望的结果。
  • 如果inplace=True,请确保你不需要保留原始DataFrame的副本,因为重命名操作会直接修改原始数据。
  • 如果遇到错误,如KeyError,可能是因为提供的标签在DataFrame中不存在。使用errors='ignore'可以忽略这些错误,但最好确保你的映射关系是准确的。

🤝 七、期待与你共同进步

  🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏

  🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟

  📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬

  💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉

  🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉

这篇关于【Python】进阶学习:pandas--rename()用法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/775946

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

java中反射Reflection的4个作用详解

《java中反射Reflection的4个作用详解》反射Reflection是Java等编程语言中的一个重要特性,它允许程序在运行时进行自我检查和对内部成员(如字段、方法、类等)的操作,本文将详细介绍... 目录作用1、在运行时判断任意一个对象所属的类作用2、在运行时构造任意一个类的对象作用3、在运行时判断

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注