CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...

本文主要是介绍CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:董小威
武汉大学

AI模型存在偏见怎么办?

近年来,AI在多个领域展现出卓越的性能,给人类生活带来便捷和改善。

与此同时,不少AI系统被发现存在对特定群体的偏见或者歧视现象。

犯罪预测系统COMPAS在美国被广泛使用,通过预测再次犯罪的可能性来指导判刑。

研究者发现,相比于白人,黑人被预测为高暴力犯罪风险的可能性竟然高77%。这里就存在一个严肃的问题:犯罪与否难道能由肤色来决定?

69601368e802f3ac9f68a5473a61eae7.png

我们经常使用的搜索引擎也普遍存在偏见。如果搜索“护士”的图片,返回的结果中大部分都是女性。

23e8bea3b86a90086345737528ca8fea.png

亚马逊的员工招聘系统,被曝出倾向于给男性打高分,给女性打低分。

0f1f9e6d4a7fb86578aab7fe41dafa80.png

为什么AI系统存在偏见?它是如何学会的?多半是数据教会了它。

例如,在亚马逊的雇员数据中,男性远多于女性,导致AI学到了性别和录用间的虚假关联,误以为男性更有资格被录用。

d187e8033e71a942599b2150a31b89bc.png

针对这一问题,研究者提出了多种公平性提升方案,但它们本质上都要修改已部署的深度学习模型。

“如果已部署上线的深度学习模型存在偏见,如何在不修改模型的情况下提升公平性呢?”浙江大学王志波教授提出了这个问题。

针对该问题,浙大王志波和任奎团队联合武汉大学、蚂蚁集团与Adobe公司,提出了一种基于对抗性扰动的深度学习模型公平性提升方案,在无须改变已部署模型的情况下提升系统的公平性。

该方案的基本思想是:通过自适应地对输入数据添加对抗性扰动,阻止模型提取出敏感属性相关信息,保留目标任务相关信息,从而使得模型公平地对待不同敏感属性的群体,给出公平的预测结果。

a5a38dee2989a29cca5287ddaa2d5bd0.png

公平性提升方案FAAP

FAAP框架包含已部署的模型扰动生成器判别器三个部分:

9c7d4e5ab8926a33b5d68830fee8e129.png

首先,用扰动生成器对图像添加对抗性扰动,扰动后的图像会输入到部署模型的特征提取器,获得图像的隐空间表示,并分别输入到标签预测器和判别器。

96260b8b36426eab7fb66a7599b2781e.png

接着衡量扰动后的图像中包含的敏感属性的信息,训练判别器从隐空间表示中预测敏感属性,并对判别器进行更新。

5968cc1ef1051d40a402415ee935d9d5.png

之后对扰动生成器进行更新,欺骗判别器,使扰动后的图像在隐空间表示中不包含敏感属性的信息,同时使标签预测器的预测结果准确。

7bdf4146ec2f77897f096ee395929f59.png

对以上步骤进行迭代,获得最终的扰动生成器,作为数据预处理单元,为已有的AI系统提升公平性。

6d04f28fbfbda704343b486287d15bc1.png

模型预测真的变公平了吗?

通过观察注意力显著图可以发现,有性别偏见的微笑识别模型,会关注于原始图像的头发区域,不可避免地使用性别相关特征进行预测。相比之下,该方案可以让模型更关注于图像嘴部区域,从而不受敏感属性的影响,做出公平的预测:

a718871530508cd5cee7d6861306c684.png

使用T-SNE处理模型特征空间的输出,可以发现,带有性别偏见的模型,在特征空间能分辨出原始图像中不同性别的样本,因而区别对待不同性别的人群。相比之下,该方案让具有不同敏感属性的样本在特征空间发生混淆,使得它们被模型公平对待:

5638f228be93297f942d7478121a7757.png

该项研究首次考虑在不改变深度学习模型的前提下提升公平性,提出的方案更贴合真实应用场景。

对于一般的部署模型,在基本不影响准确率的情况下,该方案可以大幅提升公平性,例如,在公平性指标DP和DEO上平均能够获得27.5%和66.1%的提升。

目前,该研究成果的相关论文“Fairness-aware Adversarial Perturbation Towards Bias Mitigation for Deployed Deep Models”已被CVPR 2022录用。

论文地址:

https://arxiv.org/abs/2203.01584

这篇关于CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774122

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的