Opencv Sift和Surf特征实现图像无缝拼接生成全景图像

2024-03-04 13:48

本文主要是介绍Opencv Sift和Surf特征实现图像无缝拼接生成全景图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://m.blog.csdn.net/dcrmg/article/details/52629856

          


Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接


过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2


这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。


测试用例一原图1:



测试用例一原图2:



Sift拼接效果:



Surf拼接效果:



本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。


测试用例二原图1:



测试用例二原图2:



Sift拼接效果:



Surf拼接效果:




以下是Opencv实现:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows));//在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));	ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows)));namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:


#include "highgui/highgui.hpp"  
#include "opencv2/nonfree/nonfree.hpp"  
#include "opencv2/legacy/legacy.hpp" using namespace cv;//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri);int main(int argc,char *argv[])  
{  Mat image01=imread(argv[1]);  Mat image02=imread(argv[2]);imshow("拼接图像1",image01);imshow("拼接图像2",image02);//灰度图转换Mat image1,image2;  cvtColor(image01,image1,CV_RGB2GRAY);cvtColor(image02,image2,CV_RGB2GRAY);//提取特征点  SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值vector<KeyPoint> keyPoint1,keyPoint2;  siftDetector.detect(image1,keyPoint1);  siftDetector.detect(image2,keyPoint2);	//特征点描述,为下边的特征点匹配做准备  SiftDescriptorExtractor siftDescriptor;  Mat imageDesc1,imageDesc2;  siftDescriptor.compute(image1,keyPoint1,imageDesc1);  siftDescriptor.compute(image2,keyPoint2,imageDesc2);	//获得匹配特征点,并提取最优配对  	FlannBasedMatcher matcher;vector<DMatch> matchePoints;  matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());sort(matchePoints.begin(),matchePoints.end()); //特征点排序	//获取排在前N个的最优匹配特征点vector<Point2f> imagePoints1,imagePoints2;for(int i=0;i<10;i++){		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);		}//获取图像1到图像2的投影映射矩阵,尺寸为3*3Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);		Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);Mat adjustHomo=adjustMat*homo;//获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt;//图像配准Mat imageTransform1;warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows));//在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变Mat image1Overlap,image2Overlap; //图1和图2的重叠部分	image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));Mat image1ROICopy=image1Overlap.clone();  //复制一份图1的重叠部分for(int i=0;i<image1Overlap.rows;i++){for(int j=0;j<image1Overlap.cols;j++){double weight;weight=(double)j/image1Overlap.cols;  //随距离改变而改变的叠加系数image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];}}Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows)));	 //图2中不重合的部分ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去namedWindow("拼接结果",0);imshow("拼接结果",imageTransform1);	imwrite("D:\\拼接结果.jpg",imageTransform1);waitKey();  return 0;  
}//计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{Mat originelP,targetP;originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);targetP=transformMaxtri*originelP;float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);return Point2f(x,y);
}


Sift拼接效果:



Surf拼接效果:



拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接


测试用例三原图1:



测试用例三原图2:



拼接效果:


这篇关于Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773366

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too