数据库管理-第158期 Oracle Vector DB AI-09(20240304)

2024-03-04 12:36

本文主要是介绍数据库管理-第158期 Oracle Vector DB AI-09(20240304),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据库管理158期 2024-03-04

  • 数据库管理-第158期 Oracle Vector DB & AI-09(20240304)
    • 1 创建示例表
    • 2 添加过滤条件的向量近似查询
      • 示例1
      • 示例2
      • 示例3
      • 示例4
      • 示例5
      • 示例6
      • 示例7
    • 总结

数据库管理-第158期 Oracle Vector DB & AI-09(20240304)

作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Associate: Database(Oracle与MySQL)
国内某科技公司 DBA总监
10年数据库行业经验,现主要从事数据库服务工作
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP、认证技术专家、年度墨力之星,ITPUB认证专家,OCM讲师
圈内拥有“总监”、“保安”、“国产数据库最大敌人”等称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。
除授权转载并标明出处外,均为“非法”抄袭。

一个周末过去了,感觉也没休息好,现在困得很,人整体也不大舒服。
上一期,已经展示了使用vector_distance()函数,由小到大排序输出向量距离对应结果。与专用向量数据库只存储向量且只能针对向量记性运算不同,Oracle Vector DB还可以同传统关系型数据库一样,在向量相关的SQL中添加where子句,在相似性搜索上增加过滤选项。相似性搜索与关系过滤、表连接叠加使用是一个非常强大的功能,不仅丰富了向量数据的使用方式,也简化了向量数据的使用。

1 创建示例表

按照下图创建示例表VT2,这张表是通过上一期的VT1表来创建,但是为每个向量增加了形状、颜色、大小等其他属性:
image.png

CREATE TABLE vt2 AS SELECT * FROM vt1;ALTER TABLE vt2 ADD (vsize varchar2(16),shape varchar2(16),color varchar2(16));DESC vt2;

image.png
修改向量对应大小:

UPDATE vt2
SET    vsize = 'Small'
WHERE  id IN (1, 4, 6, 8, 9, 21, 23, 26, 33, 44, 45, 52);UPDATE vt2
SET    vsize = 'Medium'
WHERE  id IN (5, 22, 25, 32, 34, 42, 43, 53, 54, 55);UPDATE vt2
SET    vsize = 'Large'
WHERE  id IN (2, 3, 7, 24, 31, 41, 51);COMMIT;

修改向量对应形状:

UPDATE vt2
SET    shape = 'Square'
WHERE  id IN (1, 3, 6, 42, 43, 54);UPDATE vt2
SET    shape = 'Triangle'
WHERE  id IN (2, 4, 7, 22, 31, 41, 44, 55);UPDATE vt2
SET    shape = 'Oval'
WHERE  id IN (5, 8, 9, 21, 23, 24, 25, 26, 32, 33, 34, 45, 51, 52, 53);COMMIT;

修改向量对应颜色:

UPDATE vt2
SET    color = 'Red'
WHERE  id IN (5, 8, 24, 26, 33, 34, 42, 44, 45, 53, 54, 55);UPDATE vt2
SET    color = 'Green'
WHERE  id IN (1, 4, 6, 21, 31, 52);UPDATE vt2
SET    color = 'Blue'
WHERE id IN (2, 3, 7, 9, 22, 23, 25, 32, 41, 43, 51);COMMIT;

检查表数据:

SELECT id, vsize, shape, color, v 
FROM   vt2
ORDER  BY id;

image.png
按大小、颜色、形状来查看向量:

SELECT vsize, count(vsize)
FROM   vt2
GROUP  BY vsize;SELECT color, COUNT(color)
FROM   vt2
GROUP  BY color;SELECT shape, COUNT(shape)
FROM   vt2
GROUP  BY shape;

image.png

2 添加过滤条件的向量近似查询

示例1

在上一期我们将查找与(16,3)最接近的三个向量。我们不关心实际距离,而是关心对象本身的ID。然而,在本次查询中,我们返回距离,以便将结果与下一个查询进行比较。
该查询的目的是从下图中检索以下Vectors。这里我们还限定了向量的ID范围(即指定向量簇):
image.png

SELECT id, vsize, shape, color, to_number(vector_distance(vector('[16, 3]'), v)) distance
FROM   vt2
WHERE  id > 30 AND id < 40
ORDER  BY vector_distance(vector('[16, 3]'), v)
FETCH FIRST 3 ROWS ONLY;

image.png

示例2

还是上面那个向量点(16,3),依然从对应向量簇中查找最近的3个向量,但是我们这次添加过滤条件为圆形,如下图:
image.png

SELECT id, vsize, shape, color, to_number(vector_distance(vector('[16, 3]'), v)) distance
FROM   vt2
WHERE  id > 30 AND id < 40
AND    shape = 'Oval'
ORDER  BY vector_distance(vector('[16, 3]'), v)
FETCH FIRST 3 ROWS ONLY;

image.png

示例3

这次查找与向量点(6,8)最近的10个向量,我们先不考虑距离,仅考虑ID,如下图:
image.png

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例4

还是向量点(6,8),只不过我们过滤红色,如下图:
image.png

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例5

还是向量点(6,8),在红色基础上添加椭圆形过滤条件,如下图:
image.png
注意,这里仅有8个红色的椭圆形,虽然SQL中要求输出前10,但是只有8个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例6

还是向量点(6,8),红色、椭圆形、小的过滤条件,如下图:
image.png
注意,这里仅有4个红色的小的椭圆形,虽然SQL中要求输出前10,但是只有4个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
AND    vsize  = 'Small'
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

示例7

还是向量点(6,8),红色、椭圆形、小的过滤条件,现在再增加ID>10,如下图:
image.png
注意,这里ID大于10的仅有3个红色的小的椭圆形,虽然SQL中要求输出前10,但是只有3个结果。

SELECT id, vsize, shape, color
FROM   vt2
WHERE  color = 'Red'
AND    shape = 'Oval'
AND    vsize  = 'Small'
AND    id    > 10
ORDER  BY vector_distance(vector('[6, 8]'), v)
FETCH FIRST 10 ROWS ONLY;

image.png

总结

本期简单演示了一下vector+where的SQL查询操作,除了常规where,还可以多表联查,例如按范式将大小、形状、颜色存放在其他表中,这些以后再做演示。
老规矩,知道写了些啥。

这篇关于数据库管理-第158期 Oracle Vector DB AI-09(20240304)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773186

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

如何通过try-catch判断数据库唯一键字段是否重复

《如何通过try-catch判断数据库唯一键字段是否重复》在MyBatis+MySQL中,通过try-catch捕获唯一约束异常可避免重复数据查询,优点是减少数据库交互、提升并发安全,缺点是异常处理开... 目录1、原理2、怎么理解“异常走的是数据库错误路径,开销比普通逻辑分支稍高”?1. 普通逻辑分支 v

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的