[C++]C++使用yolov9结合bytetrack实现目标追踪演示

2024-03-04 08:12

本文主要是介绍[C++]C++使用yolov9结合bytetrack实现目标追踪演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【简介】

在C++中实现YOLOv9的目标检测与ByteTrack的多目标追踪是一个相对复杂的过程,涉及到深度学习、计算机视觉和实时数据处理等多个领域。下面我将简单介绍这两个技术,并概述如何在C++中实现它们。

YOLOv9(You Only Look Once,版本9)是一种实时目标检测算法,它通过在单个网络中同时预测所有目标的位置和类别来实现高效的目标检测。YOLOv9在速度和精度之间取得了很好的平衡,使其成为许多实时应用的首选方法。

ByteTrack是一种多目标追踪算法,它结合了目标检测和目标追踪两个步骤。ByteTrack使用目标检测算法(如YOLOv9)来识别视频帧中的目标,并使用追踪算法来跟踪这些目标在连续帧之间的运动。ByteTrack通过关联相邻帧中的目标来实现多目标追踪,从而可以准确地跟踪多个目标的运动轨迹。

在C++中实现YOLOv9和ByteTrack的结合,需要以下几个步骤:

  1. 加载YOLOv9模型:首先,你需要加载预训练的YOLOv9模型。这可以通过使用深度学习框架(如TensorFlow、PyTorch或ONNX Runtime)来实现。你需要将模型转换为C++可以理解的格式,并在程序中加载它。
  2. 处理视频帧:然后,你需要从视频文件中读取帧,或者从摄像头捕获实时帧。这些帧将被送入YOLOv9模型进行目标检测。
  3. 执行目标检测:在加载模型后,你可以将每一帧送入模型进行目标检测。模型将返回每个检测到的目标的边界框和类别。
  4. 多目标追踪:接下来,你可以使用ByteTrack算法来追踪这些目标。ByteTrack将根据相邻帧中的目标位置和运动信息来关联目标,从而追踪它们的运动轨迹。
  5. 显示结果:最后,你可以将追踪结果可视化并显示在屏幕上。这可以通过在原始视频帧上绘制边界框和轨迹线来实现。

需要注意的是,实现这一过程需要一定的计算机视觉和深度学习基础,以及对C++编程的熟悉。此外,由于YOLOv9和ByteTrack都是比较新的技术,因此可能需要使用较新的深度学习框架和库来支持。

总的来说,在C++中实现YOLOv9和ByteTrack的多目标追踪是一个具有挑战性的任务,但它为实时目标检测和追踪提供了强大的工具。通过不断学习和实践,你可以逐渐掌握这些技术,并将其应用于各种实际应用中。

【效果展示】

演示结果

【演示视频】

C++使用yolov9结合bytetrack实现目标追踪演示_哔哩哔哩_bilibili测试环境:opencv==4.8.0vs2019cmake==3.24.3, 视频播放量 4、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:基于yolov5-6.0+bytetrack的目标追踪演示,基于yolov8官方目标追踪botsort和bytetrack源码开发视频演示,使用C++部署yolov8的onnx和bytetrack实现目标追踪,2024易语言yolo9全网最强框架更新~,用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,yolov8 TensorRT C++ C#部署,YOLOv9来啦!性能逆天~,基于目标检测通用pyqt5界面设计读取图片摄像头视频文件,使用C#部署openvino-yolov5s模型,yolov7自动标注工具自动打标签目标检测自动标注gpu加速标注使用教程icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Xm411o7JH/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov9.h"
#include<time.h>
#include <math.h>
#include <time.h>
#include <vector>
#include <chrono>
#include <float.h>
#include <stdio.h>
#include "BYTETracker.h"using namespace std;
using namespace cv;
using namespace dnn;int main() {string detect_model_path = "./models/yolov9-c.onnx";Yolov9 detector;detector.ReadModel(detect_model_path,"labels.txt",false);vector<Object> objects;cv::VideoCapture cap("D:\\car.mp4");int img_w = cap.get(CAP_PROP_FRAME_WIDTH);int img_h = cap.get(CAP_PROP_FRAME_HEIGHT);int fps = cap.get(CAP_PROP_FPS);long nFrame = static_cast<long>(cap.get(CAP_PROP_FRAME_COUNT));if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}Mat frame;BYTETracker tracker(fps, 30);int num_frames = 0;int keyvalue = 0;int total_ms = 1;while (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}num_frames++;auto start = chrono::system_clock::now();objects.clear();detector.Detect(frame, objects);vector<STrack> output_stracks = tracker.update(objects);auto end = chrono::system_clock::now();total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();for (int i = 0; i < output_stracks.size(); i++){vector<float> tlwh = output_stracks[i].tlwh;bool vertical = tlwh[2] / tlwh[3] > 1.6;if (tlwh[2] * tlwh[3] > 20 && !vertical){Scalar s = tracker.get_color(output_stracks[i].track_id);putText(frame, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5),0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);rectangle(frame, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);}}putText(frame, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, (int)output_stracks.size()),Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);imshow("demo", frame);keyvalue = waitKey(1);if (keyvalue == 113 || keyvalue == 81){break;}}cap.release();}

【源码下载】

https://download.csdn.net/download/FL1623863129/88903992

【测试环境】

vs2019

cmake==3.24.3

opencv==4.8.0

这篇关于[C++]C++使用yolov9结合bytetrack实现目标追踪演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772563

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash