KL divergence(KL 散度)详解

2024-03-04 05:12
文章标签 详解 kl 散度 divergence

本文主要是介绍KL divergence(KL 散度)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文用一种浅显易懂的方式说明KL散度。
参考资料

KL散度本质上是比较两个分布的相似程度。

现在给出2个简单的离散分布,称为分布1和分布2.

分布1有3个样本,
其中A的概率为50%, B的概率为40%,C的概率为10%

分布2也有3个样本:
其中A的概率为50%,B的概率为10%,C的概率为40%。

现在想比较分布1和分布2的相似程度。

直观看上去分布1和分布2中样本A的概率是一样的,仅仅B和C的概率换了一下。
分布应该是相似的,但是如何量化来看呢。

可以这样做,用分布1的各个样本的概率和分布2样本概率做比值,相加再求平均。

现假设分布1的概率分布为P,分布2的概率分布为Q,
那么P(A) = 0.5, P(B)=0.4, P( C) = 0.1
Q(A) = 0.5, Q(B) = 0.1, Q( C) = 0.4,

各样本概率做比值之后为:
P(A)/Q(A) + P(B)/Q(B) + P( C)/Q( C) = 1+4+1/4
再对3个样本取平均: (1+4+1/4) / 3 = 1.75
这就是我们想要的分布1和分布2的相似度。

不过有一个问题,
可以看到P(B)和Q(B), P( C)和Q( C)仅仅概率做了交换,它们的相似度大小应该是一样的(仅仅方向不一样),
也就是说P(B)/Q(B), P( C)/Q( C)的绝对值应该是一样的,符号不一样。
但是现在,哪个分子大哪个结果就大,这是不应该的,

想要这样一个函数来解决这个问题,
f(4) = y
f(1/4) = -y,
这里的4为P(B)/Q(B), 1/4为P( C)/Q( C),
经过f(x)后得到的应该是同样的相似度大小,只是方向不一样,一个是变大的方向,一个是变小的方向,用负号表示方向的不同。

那么什么样的函数能满足f(x)呢,
可以取几个值画一下,你会发现,这个f(x)就是log(x)。

那么现在把刚才的相似度修改一下,
把简单的P(x)/Q(x)换成log(P(x) / Q(x)).
于是变为: ∑ 1 n l o g P ( x ) Q ( x ) / n \sum_{1}^{n} log\frac{P(x)}{Q(x)} / n 1nlogQ(x)P(x)/n

对样本取平均值表示每个样本的weight都是1/n,
不要取这么平均,把weight改为P(x),

那么就得到 ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} 1nP(x)logQ(x)P(x)

这就是我们熟悉的KL散度,它比较的是分布P和分布Q的相似度。
“||”右边的Q表示是reference分布。

K L ( P ∣ ∣ Q ) = ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) KL(P||Q) = \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} KL(P∣∣Q)=1nP(x)logQ(x)P(x)

这篇关于KL divergence(KL 散度)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/772098

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数