图像阈值处理---移动平均法(python 实现)

2024-03-04 03:59

本文主要是介绍图像阈值处理---移动平均法(python 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

  • 前几天在看那本比较经典的冈萨雷斯的《数字图像处理》,正看到图像分割一章中用移动平均法来进行分割。介绍该方法的时候用的章节较少,感觉看的不是很明白,于是在网上搜了一下发现该方法的介绍也很少,也没有找到python相关实现(找到一个不是免费的。。),只找到了matlab和C++的实现。所以根据代码又翻书理解了一下,简单写一下移动平均法,做个总结,后面有python的实现。

概念介绍

移动平均法是可变阈值处理的一种,可变阈值是相对于全局阈值处理来说的,全局阈值处理是指根据整张图片计算出一个固定的阈值,图片中的每个像素如果大于这个值就认为是前景,否则就是背景。而可变阈值是指图片中每个位置的像素点或像素块中有着不同的阈值,如果该像素点大于其对应的阈值则认为是前景。移动平均法是线性的z字形的扫描整个图片,每个点处都会产生一个阈值,用该点处的灰度值和该点处计算出阈值比较来分割图片。

方法

假设一幅5x5的图片如下所示,aij表示在位置(i, j)处的灰度值。

因为要按照z字形线性扫描,所以要把二维矩阵变成一维的行矩阵
在这里插入图片描述

移动平均算法中会用到两个参数n和b,n表示n个像素求平均,b是一个阈值系数。下面的一维矩阵可以作为滤波器对上面得到的图像的一维行矩阵进行滤波求平均
在这里插入图片描述
这样就可以得到每个点处的平均值mij,用参数b乘以mij就是这个像素点处的阈值
在这里插入图片描述

然后就可以把每个像素点的灰度和阈值进行比较得到最终的分割图像了。

python实现

import cv2
import numpy as np
from scipy.signal import lfilterN = 10
b = 0.5def max_min_value_filter(image, ksize=3, mode=1):img = image.copy()rows, cols = img.shape# if channels == 3:#     img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)padding = (ksize-1) // 2new_img = cv2.copyMakeBorder(img, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=255)for i in range(rows):for j in range(cols):roi_img = new_img[i:i+ksize, j:j+ksize].copy()min_val, max_val, min_index, max_index = cv2.minMaxLoc(roi_img)if mode == 1:img[i, j] = max_valelif mode == 2:img[i, j] = min_valelse:raise Exception("please Select a Mode: max(1) or min(2)")return imgdef movingthreshold(f, n, k):shape = f.shapeassert n >= 1assert 0 < k < 1f[1:-1:2, :] = np.fliplr(f[1:-1:2, :])f = f.flatten()maf = np.ones(n) / nres_filter = lfilter(maf, 1, f)g = np.array(f > k * res_filter).astype(int)g = g.reshape(shape)g[1:-1:2, :] = np.fliplr(g[1:-1:2, :])g = g * 255# max value filter# g = max_min_value_filter(g, 3, 2)# cv2.blur(g, (3, 3))return gimg = cv2.imread('/path/to/image/file', 0)
res = movingthreshold(img, N, b)
cv2.imwrite('/path/to/results', res)

效果

原图
在这里插入图片描述
移动平均处理
在这里插入图片描述
最后再对结果进行一次最小值滤波
在这里插入图片描述
可以看到效果还是不错的!
在这里插入图片描述
最后贴一个风格迁移小程序,感兴趣可以玩一下。

这篇关于图像阈值处理---移动平均法(python 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771938

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3