Machine Learning by Andrew Ng on Coursera Week1(Coursera机器学习课程第一周总结)

本文主要是介绍Machine Learning by Andrew Ng on Coursera Week1(Coursera机器学习课程第一周总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Machine Learning  by Andrew Ng on Coursera 

      机器学习是近年来的一大热门学科,本人对此非常感兴趣,正好本学期学校开设机器学习MOOC课程,可以学习Coursera正版机器学习课程,于是决定每周在此总结学习的内容与大家分享。

Week1:

第一周的内容不多,主要是介绍一些基础知识,初步讲解代价函数和梯度下降法。

What is machine learning? –A computerprogram is said to learn from experience E with respect to some class of tasksT and performance measure P. If its performance as tasks in T, as measured byP, improves with experience E.

Supervised Learning 监督学习:

 know what correct output should look like.

  • regression continuous output (eg : predict the house price) 
  • classification discrete output (eg : predict whether the tumor is malignant or benign)

Unsupervised Learning 非监督学习:

Approach problems with little or no idea what our results should look like.

Model Representation:

m = Number of training examples

x = input variable/features

y = output variable/target variable

(x,y) = one training example



Cost Function 代价函数








代价函数越小,函数对原数据对拟合越好。如上图可以看出,时,对原数据拟合的最好,通过了所有的点,此时可以看到,取到最小值0。


同样,在二维特征的情况下,如上图所示,的图像为一个三维曲面,同样,在取最小值时,函数的拟合情况最好。

因此学习算法的优化目标是找到一组  的值来将  最小化。

Gradient Descent梯度下降:

知道了cost function的作用以及其与函数拟合情况的关系后,就需要有方法来求出使代价函数最小的参数值,其中之一即是gradient descent。

gradient descent的原理:想象一下你正站立在山上 想要快速下山,在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己,如果我想尽快走下山,这些小碎步需要朝什么方向?在山上的新起点上,你环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,又是一小步,并依此类推,直到局部最低点的位置。

repeat until convergence{


}


 means assign b to a。

 is the learning rate, it can control the update step-size of 

if  is too small, gradient descent can be slow;

if  is too large, gradient descent can overshoot the minimum, it may fail to converge, or even diverge.



如上图所示,执行梯度下降时,据你设定的初始值的不同,你可能会得到不同的局部最优解。

这篇关于Machine Learning by Andrew Ng on Coursera Week1(Coursera机器学习课程第一周总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771519

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操