股票买卖篇(II,III,IV)--基础,详细!状态机简单应用

2024-03-03 23:40

本文主要是介绍股票买卖篇(II,III,IV)--基础,详细!状态机简单应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

股票买卖II

 本题思路

关于异常值的解释 

代码 

 股票买卖III

 本题思路 (包括对交易过程的理解,需认真理解)

代码

股票买卖 IV 

本题思路 

 代码


股票买卖II

 输入样例

6
7 1 5 3 6 4

输出样例

7

输入样例 

5
1 2 3 4 5

输出样例 

4

 本题思路

该题是最简单的一道题

从两个状态入手

0:在第i天手中没有股票

1:在第i天手中拥有股票

状态方程

①:f[i][0]=max(f[i-1][0],f[i-1][1]+a)

一个一个解释:

f[i][0]:在第i天手中没有股票的情况

f[i-1][0]:在第i-1天其实都没有

f[i-1][1]+a:在第i-1天拥有股票,说明是在第i天卖出了,所以要加上第i天股票的价格a

②:f[i][1]=max(f[i-1][1],f[i-1][0]-a)

一个一个解释:

f[i][1]:在第i天手中拥有股票的情况

f[i-1][1]:在第i-1天其实都有

f[i-1][0]-a:在第i-1天其实没有股票,说明是在第i天买入了,所以要减去第i天股票的价格a

关于异常值的解释 

由于要用到"i-1",这种(一般都需要特殊处理),会出现f[0][1]这样尴尬的现象

就相当于你没有物品,何谈拥有,亦或者,你都没有对象,何谈分手??🐕🐕

所以现在就要对其进行特殊的赋值,由于要算最大值,呢就赋值无穷小,怎么也不会被选中

代码 

// 两种情况
// 1.第i天手中是否有股票(0:没有,1:有)
// f[i][0]=max(f[i-1][0],f[i-1][1]+a)
// f[i][1]=max(f[i-1][1],f[i-1][0]-a)#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int f[N][2];
int n;int main()
{cin>>n;f[0][1]=-0x3f3f3f3f;//刚开始以为可以省略,但是//前i-1天不可能出现,f[0][1]的情况(//观察f[i][0]的状态如果这个不特殊处理,第一波就会出错)//但是会出现f[0][0]//而且一共1e5个数大小10000,然后f[0][1]就取4个3f//我第一次取得一个-0x3f,然后在第1000组数据就WA了for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0]=max(f[i-1][0],f[i-1][1]+a);f[i][1]=max(f[i-1][1],f[i-1][0]-a);}cout<<f[n][0];return 0;
}

小插曲:

如果以后特殊值处理情况下,都设成0x3f3f3f3f,这样至少不会出现让你找好久都不知道错哪里的乌龙 

 股票买卖III

输入样例: 

8
3 3 5 0 0 3 1 4

输出样例:

6

输入样例:

5
1 2 3 4 5

输出样例: 

4

 本题思路 (包括对交易过程的理解,需认真理解)

本题在上一题基础上添加了一个条件--只允许两次交易

首先,不着急聊状态,要先明白一个词"交易",什么叫做"交易"?

就是有买,有卖,才算一次交易

要理解,从1-->0,是拥有到没有的过程这是一次交易

0--->1--->0 是第 'j-1' 次交易完后是 '0' 的状态转移到第 'j' 次交易 '1' 的状态再到第 'j' 次交易 '0' 的状态

OK!如果上述过程理解了,就到状态解释了

还是两个状态:0/1(同上)

状态方程

①:f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+a)

一个一个解释:

f[i][j][0]:在第i天,进行第j次交易后,手中没有股票

f[i-1][j][0]:在第i-1天,进行第j次交易后,手中已经没有股票,在第i天没有进行交易,保持之前的状态(故:在第i天,仍是第j次交易)

f[i-1][j][1]+a:在第i-1天,进行第j次交易后,手中持有股票(但是这个为什么是j不是j-1呢?上面我说了,1-->0才是一次交易),本次是第j次交易的一半,所以在第i天卖出,加上a,这才是一次完整的交易

②:f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-a)

f[i][j][1]:在第i天,进行第j次交易后,手中持有股票

f[i-1][j][1]:在第i-1天,进行第j次交易后,手中已经持有股票,在第i天没有进行交易,保持之前的状态

f[i-1][j-1][0]-a:在第i-1天,进行第j-1次交易时,手中卖掉了股票(1-->0这是完整的一次交易,故下次交易就是第j次,所以本次是第j次交易的开始,开始买入要减去本次的价格

好了话不多说

代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int f[N][3][2];
int n;int main()
{cin>>n;memset(f,-0x3f3f3f3f,sizeof f);f[0][0][0]=0;for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0][0]=0;for(int k=1;k<=2;k++){f[i][k][0]=max(f[i-1][k][0],f[i-1][k][1]+a);f[i][k][1]=max(f[i-1][k][1],f[i-1][k-1][0]-a);}}int ma = -0x3f3f3f3f;for(int k = 0; k <= 2; k++){ma = max(ma, f[n][k][0]);}cout<<ma;return 0;
}

这里要说一点,为什么全都开始设为异常值了,开始我还是把最特殊的f[0][0][1]一个设置了异常处理,但是我发现不对,我看完别人的我发现,你一个交易是先1(买入)再(0),呢么你f[0][1][0],f[1][0][1]······要异常处理的太多了,不只是一个了,呢索性就都进行异常处理,然后把合理的置为0,f[0][0][0],f[1][0][0]·······都是合理的至为0

还有一个乌龙,我可能基础没学好我刚开始设置f[N][2][2],我以为就两次交易,的但是WA了,然后可能要存三个?迷迷,反正开三个对了,以后抽空研究一下,应该是存了“0,1,2”,所以开三个,以后都尽量开大一点,这种错磨人得很            

股票买卖 IV 

输入样例:

3 2
2 4 1

输出样例:

2

输入样例:

6 2
3 2 6 5 0 3

输出样例:

7

本题思路 

好吧,其实本题思路和上一个一模一样,就一点不一样,上一个是进行2次交易,本题是进行k次,就代码改一点进行,不懂私信我,或者什么的都行🙂🙂

 代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int f[N][110][3];int main()
{int n,k;cin>>n>>k;memset(f,-0x3f3f3f3f,sizeof f);f[0][0][0]=0;for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0][0]=0;for(int j=1;j<=k;j++){f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+a);f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-a);}}int ma=-0x3f3f3f3f;for(int j=0;j<=k;j++){ma=max(ma,f[n][j][0]);}cout<<ma;return 0;
}

好啦,总结一波,具体就是DP的子级,比DP要多考虑一个东西,就是状态,股票就是,是否持有股票(0/1)来作为两种状态 

这篇关于股票买卖篇(II,III,IV)--基础,详细!状态机简单应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771307

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项