股票买卖篇(II,III,IV)--基础,详细!状态机简单应用

2024-03-03 23:40

本文主要是介绍股票买卖篇(II,III,IV)--基础,详细!状态机简单应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

股票买卖II

 本题思路

关于异常值的解释 

代码 

 股票买卖III

 本题思路 (包括对交易过程的理解,需认真理解)

代码

股票买卖 IV 

本题思路 

 代码


股票买卖II

 输入样例

6
7 1 5 3 6 4

输出样例

7

输入样例 

5
1 2 3 4 5

输出样例 

4

 本题思路

该题是最简单的一道题

从两个状态入手

0:在第i天手中没有股票

1:在第i天手中拥有股票

状态方程

①:f[i][0]=max(f[i-1][0],f[i-1][1]+a)

一个一个解释:

f[i][0]:在第i天手中没有股票的情况

f[i-1][0]:在第i-1天其实都没有

f[i-1][1]+a:在第i-1天拥有股票,说明是在第i天卖出了,所以要加上第i天股票的价格a

②:f[i][1]=max(f[i-1][1],f[i-1][0]-a)

一个一个解释:

f[i][1]:在第i天手中拥有股票的情况

f[i-1][1]:在第i-1天其实都有

f[i-1][0]-a:在第i-1天其实没有股票,说明是在第i天买入了,所以要减去第i天股票的价格a

关于异常值的解释 

由于要用到"i-1",这种(一般都需要特殊处理),会出现f[0][1]这样尴尬的现象

就相当于你没有物品,何谈拥有,亦或者,你都没有对象,何谈分手??🐕🐕

所以现在就要对其进行特殊的赋值,由于要算最大值,呢就赋值无穷小,怎么也不会被选中

代码 

// 两种情况
// 1.第i天手中是否有股票(0:没有,1:有)
// f[i][0]=max(f[i-1][0],f[i-1][1]+a)
// f[i][1]=max(f[i-1][1],f[i-1][0]-a)#include<bits/stdc++.h>
using namespace std;
const int N=100010;
int f[N][2];
int n;int main()
{cin>>n;f[0][1]=-0x3f3f3f3f;//刚开始以为可以省略,但是//前i-1天不可能出现,f[0][1]的情况(//观察f[i][0]的状态如果这个不特殊处理,第一波就会出错)//但是会出现f[0][0]//而且一共1e5个数大小10000,然后f[0][1]就取4个3f//我第一次取得一个-0x3f,然后在第1000组数据就WA了for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0]=max(f[i-1][0],f[i-1][1]+a);f[i][1]=max(f[i-1][1],f[i-1][0]-a);}cout<<f[n][0];return 0;
}

小插曲:

如果以后特殊值处理情况下,都设成0x3f3f3f3f,这样至少不会出现让你找好久都不知道错哪里的乌龙 

 股票买卖III

输入样例: 

8
3 3 5 0 0 3 1 4

输出样例:

6

输入样例:

5
1 2 3 4 5

输出样例: 

4

 本题思路 (包括对交易过程的理解,需认真理解)

本题在上一题基础上添加了一个条件--只允许两次交易

首先,不着急聊状态,要先明白一个词"交易",什么叫做"交易"?

就是有买,有卖,才算一次交易

要理解,从1-->0,是拥有到没有的过程这是一次交易

0--->1--->0 是第 'j-1' 次交易完后是 '0' 的状态转移到第 'j' 次交易 '1' 的状态再到第 'j' 次交易 '0' 的状态

OK!如果上述过程理解了,就到状态解释了

还是两个状态:0/1(同上)

状态方程

①:f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+a)

一个一个解释:

f[i][j][0]:在第i天,进行第j次交易后,手中没有股票

f[i-1][j][0]:在第i-1天,进行第j次交易后,手中已经没有股票,在第i天没有进行交易,保持之前的状态(故:在第i天,仍是第j次交易)

f[i-1][j][1]+a:在第i-1天,进行第j次交易后,手中持有股票(但是这个为什么是j不是j-1呢?上面我说了,1-->0才是一次交易),本次是第j次交易的一半,所以在第i天卖出,加上a,这才是一次完整的交易

②:f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-a)

f[i][j][1]:在第i天,进行第j次交易后,手中持有股票

f[i-1][j][1]:在第i-1天,进行第j次交易后,手中已经持有股票,在第i天没有进行交易,保持之前的状态

f[i-1][j-1][0]-a:在第i-1天,进行第j-1次交易时,手中卖掉了股票(1-->0这是完整的一次交易,故下次交易就是第j次,所以本次是第j次交易的开始,开始买入要减去本次的价格

好了话不多说

代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int f[N][3][2];
int n;int main()
{cin>>n;memset(f,-0x3f3f3f3f,sizeof f);f[0][0][0]=0;for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0][0]=0;for(int k=1;k<=2;k++){f[i][k][0]=max(f[i-1][k][0],f[i-1][k][1]+a);f[i][k][1]=max(f[i-1][k][1],f[i-1][k-1][0]-a);}}int ma = -0x3f3f3f3f;for(int k = 0; k <= 2; k++){ma = max(ma, f[n][k][0]);}cout<<ma;return 0;
}

这里要说一点,为什么全都开始设为异常值了,开始我还是把最特殊的f[0][0][1]一个设置了异常处理,但是我发现不对,我看完别人的我发现,你一个交易是先1(买入)再(0),呢么你f[0][1][0],f[1][0][1]······要异常处理的太多了,不只是一个了,呢索性就都进行异常处理,然后把合理的置为0,f[0][0][0],f[1][0][0]·······都是合理的至为0

还有一个乌龙,我可能基础没学好我刚开始设置f[N][2][2],我以为就两次交易,的但是WA了,然后可能要存三个?迷迷,反正开三个对了,以后抽空研究一下,应该是存了“0,1,2”,所以开三个,以后都尽量开大一点,这种错磨人得很            

股票买卖 IV 

输入样例:

3 2
2 4 1

输出样例:

2

输入样例:

6 2
3 2 6 5 0 3

输出样例:

7

本题思路 

好吧,其实本题思路和上一个一模一样,就一点不一样,上一个是进行2次交易,本题是进行k次,就代码改一点进行,不懂私信我,或者什么的都行🙂🙂

 代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int f[N][110][3];int main()
{int n,k;cin>>n>>k;memset(f,-0x3f3f3f3f,sizeof f);f[0][0][0]=0;for(int i=1;i<=n;i++){int a;scanf("%d",&a);f[i][0][0]=0;for(int j=1;j<=k;j++){f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+a);f[i][j][1]=max(f[i-1][j][1],f[i-1][j-1][0]-a);}}int ma=-0x3f3f3f3f;for(int j=0;j<=k;j++){ma=max(ma,f[n][j][0]);}cout<<ma;return 0;
}

好啦,总结一波,具体就是DP的子级,比DP要多考虑一个东西,就是状态,股票就是,是否持有股票(0/1)来作为两种状态 

这篇关于股票买卖篇(II,III,IV)--基础,详细!状态机简单应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771307

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳