【自然语言处理】BitNet b1.58:1bit LLM时代

2024-03-03 21:36

本文主要是介绍【自然语言处理】BitNet b1.58:1bit LLM时代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:https://arxiv.org/pdf/2402.17764.pdf

相关博客
【自然语言处理】BitNet b1.58:1bit LLM时代
【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)

一、BitNet

​ BitNet采用了与Transformer基本一致的模型架构,仅将标准矩阵乘法层换成了BitLinear,其他组件仍然是高精度的。BitLinear主要是包含的操纵:权重量化、激活量化以及LayerNorm。

权重量化。通过减均值实现0中心化,然后用sign实现二值化。假设全精度权重为 W ∈ R n × m W\in\mathcal{R}^{n\times m} WRn×m,则二值量化过程为
W ~ = Sign ( W − α ) (1) \widetilde{W}=\text{Sign}(W-\alpha) \tag{1} \\ W =Sign(Wα)(1)

Sign ( W i j ) = { + 1 , if W i j > 0 − 1 , if W i j ≤ 0 (2) \text{Sign}(W_{ij})=\begin{cases} +1,&&\text{if}\;W_{ij}>0 \\ -1,&&\text{if}\;W_{ij}\leq 0 \\ \end{cases} \tag{2} \\ Sign(Wij)={+1,1,ifWij>0ifWij0(2)

α = 1 n m ∑ i j W i j (3) \alpha=\frac{1}{nm}\sum_{ij}W_{ij} \tag{3} \\ α=nm1ijWij(3)

激活量化。使用absmax的方式将激活量化至b-bit。具体的实现方式是乘以 Q b Q_b Qb再除以输入矩阵的最大绝对值,从而将激活缩放至 [ − Q b , Q b ] ( Q b = 2 b − 1 ) [-Q_b,Q_b](Q_b=2^{b-1}) [Qb,Qb](Qb=2b1),即
x ~ = Quant ( x ) = Clip ( x × Q b γ , − Q b + ϵ , Q b − ϵ ) (4) \tilde{x}=\text{Quant}(x)=\text{Clip}(x\times\frac{Q_b}{\gamma},-Q_b+\epsilon,Q_b-\epsilon) \tag{4}\\ x~=Quant(x)=Clip(x×γQb,Qb+ϵ,Qbϵ)(4)

Clip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , x ) ) , γ = ∥ x ∥ ∞ (5) \text{Clip}(x,a,b)=\max(a,\min(b,x)),\quad\gamma=\parallel x\parallel_\infty \tag{5} \\ Clip(x,a,b)=max(a,min(b,x)),γ=∥x(5)

其中 ϵ \epsilon ϵ是防止裁剪时溢出的小浮点数。

​ 对于非线性函数之前的激活值则采用不同的量化方式,通过减轻最小值的方式将其缩放至 [ 0 , Q b ] [0,Q_b] [0,Qb],从而保证所有值均为非负:
x ~ = Quant ( x ) = Clip ( ( x − η ) × Q b γ , ϵ , Q b − ϵ ) , η = min ⁡ i , j x i j (6) \tilde{x}=\text{Quant}(x)=\text{Clip}((x-\eta)\times\frac{Q_b}{\gamma},\epsilon,Q_b-\epsilon),\quad\eta=\min_{i,j}x_{ij}\tag{6} \\ x~=Quant(x)=Clip((xη)×γQb,ϵ,Qbϵ),η=i,jminxij(6)
LayerNorm。在对激活值量化前,为了保证量化后的方差稳定,采用了SubLN

BitLinear的完成计算过程为
y = W ~ x ~ = W ~ Quant ( LN ( x ) ) × β γ Q b (7) y=\widetilde{W}\tilde{x}=\widetilde{W}\text{Quant}(\text{LN}(x))\times\frac{\beta\gamma}{Q_b}\tag{7} \\ y=W x~=W Quant(LN(x))×Qbβγ(7)

LN ( x ) = x − E ( x ) Var ( x ) + ϵ , β = 1 n m ∥ W ∥ 1 (8) \text{LN}(x)=\frac{x-E(x)}{\sqrt{\text{Var}(x)+\epsilon}},\quad\beta=\frac{1}{nm}\parallel W\parallel_1 \tag{8} \\ LN(x)=Var(x)+ϵ xE(x),β=nm1W1(8)

二、BitNet b1.58

​ BitNet b1.58在BitNet的基础上做了一些修改。

权重量化。采用absmean的方式将权重约束在 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}中,而BitNet则将权重约束为二值 { − 1 , 1 } \{-1,1\} {1,1}。具体来说,先使用平均绝对值来缩放权重,然后通过舍入的方式转换为 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}
W ~ = RoundClip ( W γ + ϵ , − 1 , 1 ) (9) \widetilde{W}=\text{RoundClip}(\frac{W}{\gamma+\epsilon},-1,1)\tag{9} \\ W =RoundClip(γ+ϵW,1,1)(9)

RoundClip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , round ( x ) ) ) (10) \text{RoundClip}(x,a,b)=\max(a,\min(b,\text{round}(x)))\tag{10} \\ RoundClip(x,a,b)=max(a,min(b,round(x)))(10)

γ = 1 n m ∑ i j ∣ W i j ∣ (11) \gamma=\frac{1}{nm}\sum_{ij}|W_{ij}|\tag{11} \\ γ=nm1ijWij(11)

激活量化。同BitNet一样,但是对于非线性函数前的激活不再量化至 [ 0 , Q b ] [0,Q_b] [0,Qb],而是都量化至 [ − Q b , Q b ] [-Q_b,Q_b] [Qb,Qb]

​ 此外,为了能够方便于开源软件兼容,整体结构采用类似LLaMA的结构。具体来说,使用RMSNorm、SwiGLU、RoPE并移除所有偏置。

三、实验

1. 困惑度

在这里插入图片描述

​ BitNet b1.58在3B大小时,困惑度与LLaMA相匹配,但是速度快2.71倍且显存使用减少3.55倍。当BitNet b1.58大小为3.9B时,速度快2.4倍且显存减少3.32倍,并且效果显著优于LLaMA 3B。

2. 下游任务

在这里插入图片描述

​ 随着模型尺寸的增加,BitNet b1.58和LLaMA在下游任务上的差距逐步缩小。在尺寸达到3B时,BitNet b.158能够与全精度相匹配。

3. 显存和延时

在这里插入图片描述

​ 随着模型尺寸的增加,BitNet b1.58的速度优势和显存优势会更加明显。

4. 能耗

在这里插入图片描述

​ 矩阵乘法是LLM中能耗最高的部分。BitNet b1.58主要是INT8的加法计算,而LLaMA则是由FP16加法和乘法组成。在7nm芯片上,BitNet b1.58能够节约71.4倍的计算能耗。随着模型尺寸的增加,BitNet b1.58在能耗方面会越来越高效。

5. 吞吐

在这里插入图片描述
​ 相同机器下,BitNet b1.58的batch size是LLaMA LLM的11倍,吞吐则是8.9倍。

这篇关于【自然语言处理】BitNet b1.58:1bit LLM时代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770983

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结