力扣第 387 场周赛第四题 将元素分配到两个数组中 II 二分查找,离散化,线段树

本文主要是介绍力扣第 387 场周赛第四题 将元素分配到两个数组中 II 二分查找,离散化,线段树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem: 100246. 将元素分配到两个数组中 II

在力扣的题解

赛时没做出来,想了个排序,其实排序总假设最坏的情况即倒序,那肯定超时。当时想到线段树了,但是好久没练没搞出来QAQ,我的板子的线段树下标是从1开始的。
(新题题解力扣审的挺严,我随便写的被截了,所以乖乖算了次复杂度嘤嘤嘤~)

文章目录

  • 思路
  • 解题方法
    • 1.离散化
    • 2.线段树
  • 复杂度
  • Code

思路

我们可以开数组arr1,arr2来统计其中数字出现的数目(下标 i 代表数值,值arr[i]代表出现的次数),然后就可以通过区间和快速得到数组中大于某个数的数目。

因为数据是不断变化的,所以我们得使用树状数组或者线段树。

解题方法

1.离散化

由于数据范围是1~1e9,太大了,不能开1e9的数组。
但是数据量只有1e5,所以我们可以离散化来处理。

离散化后我们要再找这个数的位置,使用二分查找

复制一个数组tmp = nums,我们对tmp进行排序,即完成的离散化。
(由于要使用线段树,所以下标从1开始。)

2.线段树

然后就是通过线段树获取区间和,我们要的是严格大于当前数的数目,找到这个数的下标,下一个位置到数组末尾这段区间的和就是数目。(可能是最后一个数,下一个位置就越界了,特殊处理一下即可)

参考线段树板子:线段树板子

复杂度

时间复杂度:

O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

二分 l o g 2 n log_2n log2n,建树 n l o g 2 n nlog_2n nlog2n,区间加 l o g 2 n log_2n log2n,区间修改 l o g 2 n log_2n log2n,遍历数组n,各算法间互补干扰,取最大 n l o g 2 n nlog_2n nlog2n

空间复杂度:

O ( 2 n + n ) O(2^n+n) O(2n+n)

对于线段树数组的计算: 1 ∗ 2 ∗ . . . ∗ n 1*2*...*n 12...n,公比为2的等比数列, 1 ∗ 2 n − 1 1 1*\frac{2^{n}-1}{1} 112n1 即 2^n
再加上原数组大小n

Code

类ST是板子;
getmid是二分找下标;
tmp是离散化后下标对应的值的数组。

#define ll long long
class Solution {
public:template<class T>class ST//segment tree{struct node{T val;T t;//懒标记//服务后代node(T v = 0) :val(v), t(0){}};int n = a.size();vector<T>a;vector<node>d;public:void build_tree(int i, int l, int r){if (l == r){d[i].val = a[l];return;}int mid = l + (r - l) / 2;build_tree(i * 2, l, mid);build_tree(i * 2 + 1, mid + 1, r);d[i].val = d[i * 2].val + d[i * 2 + 1].val;}void spread(int i, int l, int r, int aiml, int aimr){int mid = l + (r - l) / 2;if (d[i].t != 0 && l != r){d[i * 2].val += d[i].t * (mid - l + 1);d[i * 2 + 1].val += d[i].t * (r - mid);d[i * 2].t += d[i].t;//可能上上次也没改d[i * 2 + 1].t += d[i].t;d[i].t = 0;}}T getsum(int l, int r){return _getsum(1, 1, n, l, r);}T _getsum(int i, int l, int r, int aiml, int aimr){if (aiml <= l && r <= aimr)//查询区间的子集全部加起来return d[i].val;//访问int mid = l + (r - l) / 2;spread(i, l, r, aiml, aimr);T ret = 0;if (aiml <= mid)ret += _getsum(i * 2, l, mid, aiml, aimr);if (aimr >= mid + 1)ret += _getsum(i * 2 + 1, mid + 1, r, aiml, aimr);return ret;}void update(int l, int r, ll val){_update(1, 1, n, l, r, val);//加并挂标记}void _update(int i, int l, int r, int aiml, int aimr, ll val){if (aiml <= l && r <= aimr){d[i].val += val * (r - l + 1);d[i].t += val;return;}int mid = l + (r - l) / 2;spread(i, l, r, aiml, aimr);if (aiml <= mid)_update(i * 2, l, mid, aiml, aimr, val);if (aimr >= mid + 1)_update(i * 2 + 1, mid + 1, r, aiml, aimr, val);//我们只对叶子更新了,(别多想懒标记)d[i].val = d[i * 2].val + d[i * 2 + 1].val;}ST(vector<T>arr){a = arr;n = a.size() - 1;d = vector<node>((ll)pow((ll)2, (ll)log2(n) + 1 + 1) + 10);build_tree(1, 1, n);}};//vector<int>tmp;int n;int getmid(int aim){int l = 0, r = n;while (l < r){int m = (l + r + 1) / 2;if (tmp[m] <= aim)l = m;else r = m - 1;}return l;}vector<int> resultArray(vector<int>& nums){n = nums.size();//tmp = nums;tmp = vector<int>(n + 1);for (int i = 1; i <= n; i++){tmp[i] = nums[i - 1];}sort(tmp.begin() + 1, tmp.end());vector<int>arr1, arr2, ret;vector<int>sarr1(n+1), sarr2(n+1);ST<int>demo1(sarr1), demo2(sarr2);arr1.push_back(nums[0]);arr2.push_back(nums[1]);int t = getmid(nums[0]);demo1.update(t, t, 1);t = getmid(nums[1]);demo2.update(t, t, 1);for (int i = 2; i < nums.size(); i++){t = getmid(nums[i]);//这个值的下标,我们求右边数目       if (t == n){if (arr1.size() <= arr2.size())arr1.push_back(nums[i]), demo1.update(t, t, 1);elsearr2.push_back(nums[i]), demo2.update(t, t, 1);continue;}int r1 = demo1.getsum(t + 1, n), r2 = demo2.getsum(t + 1, n);if (r1 == r2){if (arr1.size() <= arr2.size())arr1.push_back(nums[i]), demo1.update(t, t, 1);elsearr2.push_back(nums[i]), demo2.update(t, t, 1);}else if (r1 > r2)arr1.push_back(nums[i]), demo1.update(t, t, 1);elsearr2.push_back(nums[i]), demo2.update(t, t, 1);}ret = arr1;for (auto x : arr2)ret.push_back(x);return ret;}
};

这篇关于力扣第 387 场周赛第四题 将元素分配到两个数组中 II 二分查找,离散化,线段树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770828

相关文章

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空