【Python】进阶学习:pandas--isin()用法详解

2024-03-03 17:36

本文主要是介绍【Python】进阶学习:pandas--isin()用法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】进阶学习:pandas–isin()用法详解

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 📚 一、pandas库简介
  • 🔍 二、isin()方法基础
    • 📋 示例1:筛选DataFrame中的特定值
    • 📋 示例2:结合多个条件筛选
  • 🎯 三、高级用法与技巧
    • 📋 示例3:筛选DataFrame中多个列的值
    • 📋 示例4:结合set数据结构使用isin()
  • 🎉 四、总结
  • 🤝 五、期待与你共同进步

📚 一、pandas库简介

  pandas是Python中一个非常流行的数据处理库,它提供了大量的数据结构(如Series和DataFrame)以及数据分析工具,使得数据处理变得既简单又高效。在pandas中,isin()是一个非常重要的方法,它允许我们根据一个值列表来筛选数据。

🔍 二、isin()方法基础

  isin()方法用于过滤数据框(DataFrame)或序列(Series)中的值,仅保留在给定列表中出现的值。

📋 示例1:筛选DataFrame中的特定值

假设我们有一个DataFrame df,其中包含学生的信息:

import pandas as pd# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)# 筛选Subject列为'Math'或'Science'的学生
selected_students = df[df['Subject'].isin(['Math', 'Science'])]
print(selected_students)

输出:

      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

📋 示例2:结合多个条件筛选

isin()方法可以与其他条件筛选方法结合使用,以创建更复杂的筛选条件。

import pandas as pd# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)# 筛选Score大于85且Subject为'Math'或'Science'的学生
combined_filter = df[(df['Score'] > 85) & df['Subject'].isin(['Math', 'Science'])]
print(combined_filter)

输出:

      Name  Subject  Score
0    Alice     Math     90
2  Charlie     Math     92
4      Eve  Science     88

🎯 三、高级用法与技巧

  isin()方法不仅限于简单的值匹配,还可以与其他pandas功能结合使用,以实现更高级的数据筛选。

📋 示例3:筛选DataFrame中多个列的值

我们可以同时检查多个列中的值是否存在于给定的列表中。

import pandas as pd# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)# 筛选Name为'Alice'或'Charlie',且Subject为'Math'或'Science'的学生
multi_column_filter = df[(df['Name'].isin(['Alice', 'Charlie']) & df['Subject'].isin(['Math', 'Science']))]
print(multi_column_filter)

输出:

      Name Subject  Score
0    Alice    Math     90
2  Charlie    Math     92

📋 示例4:结合set数据结构使用isin()

使用set数据结构可以更有效地执行isin()操作,尤其是当比较值列表非常大时。

import pandas as pd# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],'Subject': ['Math', 'Science', 'Math', 'History', 'Science'],'Score': [90, 85, 92, 78, 88]
}
df = pd.DataFrame(data)# 将要匹配的值转换为set以提高效率
subjects_set = {'Math', 'Science'}# 筛选Subject列为'Math'或'Science'的学生
set_filter = df[df['Subject'].isin(subjects_set)]
print(set_filter)

输出:

      Name  Subject  Score
0    Alice     Math     90
1      Bob  Science     85
2  Charlie     Math     92
4      Eve  Science     88

🎉 四、总结

  isin()是pandas中一个非常实用的方法,它允许我们根据给定的值列表来筛选数据。通过结合不同的条件和技巧,我们可以实现复杂的数据筛选任务。在使用isin()方法时,保持代码清晰、高效和易于维护非常重要。通过遵循最佳实践,我们可以确保筛选操作能够快速、准确地返回所需的结果。

🤝 五、期待与你共同进步

  在数据处理的旅程中,我们始终在学习和成长。希望这篇博客能够帮助你更好地理解和应用pandas中的isin()方法。如果你有任何疑问或建议,欢迎在评论区留言,我们一起探讨和学习。同时,也期待你分享你的经验和见解,让我们共同进步!

这篇关于【Python】进阶学习:pandas--isin()用法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770389

相关文章

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F