多态——细致讲解

2024-03-03 10:20
文章标签 讲解 多态 细致

本文主要是介绍多态——细致讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🔶多态基础概念
 🔶概念
  🔱多态性
  🔱多态——重新(覆盖)
 🔶示例
  🔶基本使用方法
  🔶特例
   🔱协变
   🔱析构函数重写
 🔱多态原理
  🔱1. 虚函数形成虚表
  🔱2. 虚函数存储位置(覆盖)
  🔱3. 多态中重写的虚函数存储位置
   🔱1. 重写原理——虚表
   🔱2. 单继承中,子类新增虚函数会存到父类的虚表中——普通继承
   🔱3. 单继承中,子类新增虚函数会存到父类的虚表中——虚继承
   🔱4. 同类公用一个虚表;父类和子类不共用一张虚表
 🔱多态例题
🔱经典问题

多态基础概念

概念

多态性

 1. 静态多态:函数重载和运算符重载
 2. 动态多态:继承和虚函数

多态——重写(覆盖)

 1. 父类的指针/引用调用虚函数
 2. 调用的虚函数必须是子类重写的虚函数
这样就能在指针调用相应的对象函数的时候使用相应的成员函数,具体看示例
这里条件很严格
重写的函数要是一摸一样——返回值,函数名,参数个数,参数位置,参数类型都要完全一样,虚函数之后的const也要一样

示例

基本使用方法
  1. 父类中需要使用virtual修饰函数,子类中virtual可以不写
class A
{
public:virtual void func(){puts("A-->func");}
};
class B:public A
{
public:virtual void func(){puts("B-->func");}
};
int main()
{// 父类指向子类A* a1 = new B;a1->func();// 父类指向父类a1 = new A;a1->func();// 父类引用子类B tb;A& a2 = tb;a2.func();// 父类引用父类A ta;A& a3 = ta; // 不能直接使用a2=ta,引用不能重新赋值,虽然他不会报错,但是他的结果是错的a3.func();return 0;
}

在这里插入图片描述


  1. final 修饰类——不能继承

在这里插入图片描述

修饰虚函数——不能背重写

在这里插入图片描述

  1. override ——这个函数一定要重新父类的某一个虚函数

在这里插入图片描述

一定要注意这两个关键字加载虚函数结尾

特例
协变

虚函数的返回值可以不一样,只能出现父类返回父类的指针/引用,子类返回子类的指针/引用

在这里插入图片描述

不可以一个返回指针,一个返回引用
只能同时返回指针/同时返回引用

析构函数重写
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}~A(){cout << "delete A" << endl;}int _a = 1;};
class B :public A
{
public:virtual void fun1(){cout << "B::fun1" << endl;}virtual void fun3(){cout << "B::fun3" << endl;}~B(){cout << "delete B" << endl;}int _b = 2;
};
int main()
{A* a = new B;delete a;return 0;
}

在这里插入图片描述

delete释放看的是类型,也就是说这里delete调用的是A的析构函数
根本上说,delete会被处理成—> destructor() + operator delete,所以他们能构成重写,在具体实现的时候需要写成virtual

	virtual ~A(){cout << "delete A" << endl;}

在这里插入图片描述


多态原理

1. 虚函数形成虚表
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}};
int main()
{A a;return 0;
}

在这里插入图片描述

2. 虚函数存储位置

虚函数和普通函数放在一起,虚表存储在代码段

3. 多态中重写的虚函数存储位置
🎭1. 重写原理——虚表
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}};
class B :public A
{
public:virtual void fun1(){cout << "B::fun1" << endl;}
};
int main()
{B b;return 0;
}

在这里插入图片描述

🎭2. 单继承中,子类新增虚函数会存到父类的虚表中——普通继承
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}};
class B :public A
{
public:virtual void fun1(){cout << "B::fun1" << endl;}virtual void fun3(){cout << "B::fun3" << endl;}
};
int main()
{B b;print((T*)(*(int*)(&b)));return 0;
}

在这里插入图片描述
vs中虚表通常在最后一个都是0,Linux不是

在这里插入图片描述

🎭3. 单继承中,子类新增虚函数会存到父类的虚表中——虚继承
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}int _a = 1;};
class B :virtual public A
{
public:virtual void fun1(){cout << "B::fun1" << endl;}virtual void fun3(){cout << "B::fun3" << endl;}int _b = 2;
};
int main()
{B b;A* a = &b; // 要注意这种写法,确保他能准确跳到下一个虚表处print((T*)(*(int*)(a)));print((T*)(*(int*)(&b)));return 0;
}

在这里插入图片描述
在这里插入图片描述

🎭4. 同类公用一个虚表;父类和子类不共用一张虚表
#include<iostream>
using namespace std;
typedef void (*T)();
class A
{
public:virtual void fun1(){cout << "A::fun1" << endl;}virtual void fun2(){cout << "A::fun2" << endl;}int _a = 1;};
class B :virtual public A
{
public:virtual void fun1(){cout << "B::fun1" << endl;}int _b = 2;
};
int main()
{A a;B b1;B b2;return 0;
}

在这里插入图片描述


🖼多态例题

class A
{
public:virtual void fun(int val = 1){cout << "val = " << val << endl;}virtual void test(){fun();}
};
class B :public A
{
public:virtual void fun(int val = 0){cout << "val = " << val << endl;}
};
int main()
{A* a = new B;a->test();return 0;
}
void print(T a[])
{for (int i = 0; a[i] != 0; i++){printf("[%d]--->%p\n", i, a[i]);}puts("");
}
int main()
{B b;print((T*)(*(int*)(&b)));return 0;
}

在这里插入图片描述

  1. 父类指向子类,调用的test函数,test函数是父类的虚函数,类内的函数有一个默认的this指针,test内部调用的fun函数实际上是this->fun(this类型是A*——父类的指针指向虚函数),fun是子类重写的虚函数(函数是子类重写的虚函数)——满足多态条件
  2. 虚函数中的this是根据是否重写确定的,这里的test没有被重写,是A*this指针,然后调用fun,fun是经过重写的函数,所以调用的是重写的函数
  3. 虚函数继承的是函数的接口,重写的是函数的实现

所以缺省值才是1


#include<iostream>
using namespace std;class A
{
public:virtual void fun(int val = 0){printf("A::fun()--> %d", val);}virtual void test(){fun();}
};
class B:public A
{
public:void fun(int val = 1){printf("B::fun()--> %d", val);}
};
int main()
{B b;b.test();return 0;
}

在这里插入图片描述


🔒经典问题

  1. 什么是多态?
  2. 什么是重载、重写(覆盖)、重定义(隐藏)?
  3. 多态的实现原理?
  4. inline函数可以是虚函数吗?

可以,不构成多态就是inline,构成多态就不是inline

  1. 静态成员可以是虚函数吗?

不能,因为静态成员函数没有this指针,使用类型::成员函数
的调用方式无法访问虚函数表,所以静态成员函数无法放进虚函数表。

  1. 构造函数可以是虚函数吗?

不能,虚表在编译时生成
在调用构造函数之后,但是虚表指针在成员初始化之前

  1. 析构函数可以是虚函数吗?

本就应该是,在A* a = new B;这种场景下,在释放子类对象时,需要将析构函数变成虚函数

  1. 对象访问普通函数快还是虚函数更快?

首先如果是普通对象,是一样快的。如果构成多态,就是普通函数快,因为运行时调用虚函数需要到虚函数表中去查找。

  1. 虚函数表是在什么阶段生成的,存在哪的?

虚函数表是在编译阶段就生成的,一般情况下存在代码段(常量区)的。

  1. C++菱形继承的问题?虚继承的原理?

菱形继承会造成祖宗类数据冗余的问题
在每一个继承自祖宗类的派生类中,使用一个指针指向一个偏移量,根据偏移量找到的地址就是祖宗类的数据,并且这个数据只有一份

  1. 什么是抽象类?抽象类的作用?

抽象类含有形如 virtual void fun() =0; 的基类/派生类
强制派生类重写父类的实现


原理的角度理解,重写之后将fun虚函数进行覆盖test是A*this调用经过重写的虚函数fun符合多态的条件,并且继承的是接口不是实现fun虚函数继承父类函数接口,并使用重写的虚函数实现,最终形成了这个样子


优秀多态文章
优秀多态文章
为什么要使用父类指针和引用实现多态,而不能使用对象?
虚析构函数
虚表位置
虚表位置

这篇关于多态——细致讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769332

相关文章

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Java 继承和多态的作用及好处

《Java继承和多态的作用及好处》文章讲解Java继承与多态的概念、语法及应用,继承通过extends复用父类成员,减少冗余;多态实现方法重写与向上转型,提升灵活性与代码复用性,动态绑定降低圈复杂度... 目录1. 继承1.1 什么是继承1.2 继承的作用和好处1.3 继承的语法1.4 子类访问父类里面的成

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve