计算机设计大赛 深度学习机器视觉车道线识别与检测 -自动驾驶

本文主要是介绍计算机设计大赛 深度学习机器视觉车道线识别与检测 -自动驾驶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 前言
  • 2 先上成果
  • 3 车道线
  • 4 问题抽象(建立模型)
  • 5 帧掩码(Frame Mask)
  • 6 车道检测的图像预处理
  • 7 图像阈值化
  • 8 霍夫线变换
  • 9 实现车道检测
    • 9.1 帧掩码创建
    • 9.2 图像预处理
      • 9.2.1 图像阈值化
      • 9.2.2 霍夫线变换
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器视觉 深度学习 车道线检测 - opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

请添加图片描述

3 车道线

理解车道检测的概念

那么什么是车道检测?以下是百度百科对车道的定义:

车道,又称行车线、车行道,是用在供车辆行经的道路。在一般公路和高速公路都有设置,高速公路对车道使用带有法律上的规则,例如行车道和超车道。

在这里插入图片描述

对其进行定义是很重要的,因为它使我们能够继续进行车道检测概念。我们在建立一个系统时不能有任何含糊不清的地方。

正如我前面提到的,车道检测是自动驾驶汽车和自动驾驶汽车的关键组成部分。这是驾驶场景理解的重要研究课题之一。一旦获得车道位置,车辆就知道去哪里,并避免撞上其他车道或离开道路。这样可以防止驾驶员/车辆系统偏离车道。

以下是一些随机道路图像(第一行)及其检测到的车道(第二行):

4 问题抽象(建立模型)

我们希望执行的任务是实时检测视频中的车道。我们可以通过多种方式进行车道检测。我们可以使用基于学习的方法,例如在带注释的视频数据集上训练深度学习模型,或者使用预训练好的模型。

然而,也有更简单的方法来执行车道检测。在这里,学长将向你展示如何在不使用任何深入学习模型的情况下完成此任务。

下面是将要处理的视频的一个帧:

正如我们在这张图片中看到的,我们有四条车道被白色的车道标线隔开。所以,要检测车道,我们必须检测车道两边的白色标记。这就引出了一个关键问题——我们如何检测车道标线?

除了车道标线之外,场景中还有许多其他对象。道路上有车辆、路侧护栏、路灯等,在视频中,每一帧都会有场景变化。这很好地反映了真实的驾驶情况。

因此,在解决车道检测问题之前,我们必须找到一种方法来忽略驾驶场景中不需要的对象。

我们现在能做的一件事就是缩小感兴趣的领域。与其使用整个帧,不如只使用帧的一部分。在下面的图像中,除了车道的标记之外,其他所有内容都隐藏了。当车辆移动时,车道标线将或多或少地落在该区域内:

在这里插入图片描述

5 帧掩码(Frame Mask)

帧掩码只是一个NumPy数组。

当我们想对图像应用掩码时,只需将图像中所需区域的像素值更改为0、255或任何其他数字。

下面给出了一个图像掩蔽的例子。图像中某个区域的像素值已设置为0:

在这里插入图片描述
这是一种非常简单但有效的从图像中去除不需要的区域和对象的方法。

6 车道检测的图像预处理

我们将首先对输入视频中的所有帧应用掩码。

然后,我们将应用图像阈值化和霍夫线变换来检测车道标线。

7 图像阈值化

在这种方法中,灰度图像的像素值根据阈值被指定为表示黑白颜色的两个值之一。因此,如果一个像素的值大于一个阈值,它被赋予一个值,否则它被赋予另一个值。

在这里插入图片描述

如上所示,对蒙版图像应用阈值后,我们只得到输出图像中的车道标线。现在我们可以通过霍夫线变换很容易地检测出这些标记。

8 霍夫线变换

霍夫线变换是一种检测任何可以用数学方法表示的形状的方法。

例如,它可以检测矩形、圆、三角形或直线等形状。我们感兴趣的是检测可以表示为直线的车道标线。

在执行图像阈值化后对图像应用霍夫线变换将提供以下输出:

在这里插入图片描述

9 实现车道检测

是时候用Python实现这个车道检测项目了!我推荐使用Google Colab,因为构建车道检测系统需要计算能力。

首先导入所需的库:

import os
import re
import cv2
import numpy as np
from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
# 获取帧的文件名
col_frames = os.listdir('frames/')
col_frames.sort(key=lambda f: int(re.sub('\D', '', f)))# 加载帧
col_images=[]
for i in tqdm_notebook(col_frames):img = cv2.imread('frames/'+i)col_images.append(img)
# 指定一个索引
idx = 457# plot frame
plt.figure(figsize=(10,10))
plt.imshow(col_images[idx][:,:,0], cmap= "gray")
plt.show()

在这里插入图片描述

9.1 帧掩码创建

我们感兴趣的区域是一个多边形。我们想掩盖除了这个区域以外的一切。因此,我们首先必须指定多边形的坐标,然后使用它来准备帧掩码:

在这里插入图片描述
在这里插入图片描述

9.2 图像预处理

我们必须对视频帧执行一些图像预处理操作来检测所需的车道。预处理操作包括:

  • 图像阈值化

  • 霍夫线变换

9.2.1 图像阈值化

在这里插入图片描述

9.2.2 霍夫线变换

lines = cv2.HoughLinesP(thresh, 1, np.pi/180, 30, maxLineGap=200)# 创建原始帧的副本
dmy = col_images[idx][:,:,0].copy()# 霍夫线
for line in lines:x1, y1, x2, y2 = line[0]cv2.line(dmy, (x1, y1), (x2, y2), (255, 0, 0), 3)# 画出帧
plt.figure(figsize=(10,10))
plt.imshow(dmy, cmap= "gray")
plt.show()

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于计算机设计大赛 深度学习机器视觉车道线识别与检测 -自动驾驶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769250

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

如何正确识别一台POE交换机的好坏? 选购可靠的POE交换机注意事项

《如何正确识别一台POE交换机的好坏?选购可靠的POE交换机注意事项》POE技术已经历多年发展,广泛应用于安防监控和无线覆盖等领域,需求量大,但质量参差不齐,市场上POE交换机的品牌繁多,如何正确识... 目录生产标识1. 必须包含的信息2. 劣质设备的常见问题供电标准1. 正规的 POE 标准2. 劣质设

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达