SparkStreaming在实时处理的两个场景示例

2024-03-03 08:36

本文主要是介绍SparkStreaming在实时处理的两个场景示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Spark Streaming是Apache Spark生态系统中的一个组件,用于实时流式数据处理。它提供了类似于Spark的API,使开发者可以使用相似的编程模型来处理实时数据流。

Spark Streaming的工作原理是将连续的数据流划分成小的批次,并将每个批次作为RDD(弹性分布式数据集)来处理。这样,开发者可以使用Spark的各种高级功能,如map、reduce、join等,来进行实时数据处理。Spark Streaming还提供了内置的窗口操作、状态管理、容错处理等功能,使得开发者能够轻松处理实时数据的复杂逻辑。

Spark Streaming支持多种数据源,包括Kafka、Flume、HDFS、S3等,因此可以轻松地集成到各种数据管道中。它还能够与Spark的批处理和SQL引擎进行无缝集成,从而实现流式处理与批处理的混合使用。
在这里插入图片描述

本文以 TCP、kafka场景讲解spark streaming的使用

消息队列下的信息铺抓

类似消息队列的有redis、kafka等核心组件。
本文以kafka为例,向kafka中实时抓取数据,

pom.xml中添加以下依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.0</version></dependency><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark Streaming Kafka Connector --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming-kafka-0-10_2.12</artifactId><version>3.2.0</version></dependency><!-- PostgreSQL JDBC --><dependency><groupId>org.postgresql</groupId><artifactId>postgresql</artifactId><version>42.2.24</version></dependency>
</dependencies>

创建项目编写以下代码实现功能

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka").setMaster("local[*]").setExecutorEnv("setLogLevel", "ERROR");//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");kafkaParams.put("key.deserializer", StringDeserializer.class);kafkaParams.put("value.deserializer", StringDeserializer.class);kafkaParams.put("auto.offset.reset", "earliest");// auto.offset.reset可指定参数有// latest:从分区的最新偏移量开始读取消息。// earliest:从分区的最早偏移量开始读取消息。// none:如果没有有效的偏移量,则抛出异常。kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offsetkafkaParams.put("group.id", "spark_kafka"); //消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka);//定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合}), schema);// 写入到 PostgreSQLdf.write()//选择写入数据库的模式.mode(SaveMode.Append)//采用追加的写入模式//协议.format("jdbc")//option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL//确定表名.option("dbtable", "public.spark_kafka")//指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在执行代码前,向创建名为spark_kafka的topic

kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

向spark_kafka 主题进行随机推数

kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

运行过程中消费的offset会一直被提交到每一个分区
在这里插入图片描述

此时在数据库中查看,数据已经实时落地到库中
在这里插入图片描述

TCP

TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka") // 设置应用程序名称.setMaster("local[*]") // 设置 Spark master 为本地模式,[*]表示使用所有可用核心// 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀.setExecutorEnv("setLogLevel", "ERROR");// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址kafkaParams.put("key.deserializer", StringDeserializer.class); // key 反序列化器类kafkaParams.put("value.deserializer", StringDeserializer.class); // value 反序列化器类kafkaParams.put("auto.offset.reset", "earliest"); // 从最早的偏移量开始消费消息kafkaParams.put("enable.auto.commit", true);  // 采用自动提交 offset 的模式kafkaParams.put("auto.commit.interval.ms", 2000); // 每隔两秒提交一次 committed-offsetkafkaParams.put("group.id", "spark_kafka"); // 消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  // 订阅 Kafka);// 定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  // 将偏移量和 value 聚合}), schema);// 写入到 PostgreSQLdf.write()// 选择写入数据库的模式.mode(SaveMode.Append) // 采用追加的写入模式// 协议.format("jdbc")// option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL// 确定表名.option("dbtable", "public.spark_kafka") // 指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在10.0.0.108 打开9999端口键入数值 ,使其被spark接收到并进行运算

nc -lk 9999

开启端口可以键入数值 此时会在IDEA的控制台显示其计算值
在这里插入图片描述

这篇关于SparkStreaming在实时处理的两个场景示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769078

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛