深度学习_17_丢弃法调整过拟合

2024-03-03 06:04

本文主要是介绍深度学习_17_丢弃法调整过拟合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

除了权重衰退法调整过拟合,还有丢弃法调整模型得过拟合现象

过拟合:

在这里插入图片描述
丢弃法如果直接丢弃会导致新期望的不确定性,为了防止这个不确定被模型学到,所以要保证丢弃后的期望和丢弃前的期望一样(个人观点)
在这里插入图片描述

顾名思义,丢弃一些元素,单保持整体期望不变,让模型自己去权衡哪些元素是最重要得部分,从而着重选择那些元素

过拟合是因为模型学习过多无用杂质,用丢弃法,丢弃的可能是重要特征,或者杂质,通过丢弃的结果,让模型权衡哪些部分是最重要的,从而学习更稳健的特征

在这里插入图片描述
丢弃法在含隐藏层的模型中应用非常广泛

实例代码:

完整代码:

import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as pltnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256def evaluate_loss(net, data_iter, loss):metric = d2l.Accumulator(2)net.eval()  # 评估状态for X, y in data_iter:out = net(X)# y = y.float()l = loss(out, y)metric.add(l.sum(), l.numel())return metric[0] / metric[1]
def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)dropout1, dropout2 = 0.7, 0.7  # 0.7 0.7class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)  # 形状(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)  # 总体输出为(num_inputs, num_outputs), num_output类别self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outif __name__ == '__main__':net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)num_epochs, lr, batch_size = 10, 0.5, 256loss = nn.CrossEntropyLoss()train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)  # 取衣服数据集trainer = torch.optim.SGD(net.parameters(), lr=lr)  # 优化器
# d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)train_losses = []test_losses = []test_acces = []for epoch in range(num_epochs):train_metrics, _ = d2l.train_epoch_ch3(net, train_iter, loss, trainer)train_losses.append(train_metrics)test_acc = d2l.evaluate_accuracy(net, test_iter)test_loss = evaluate_loss(net, test_iter, loss)test_acces.append(test_acc)test_losses.append(test_loss)print(f"Epoch {epoch + 1}/{num_epochs}:")print(f"  训练损失: {train_metrics:.4f}, 测试损失: {test_loss:.4f}, 测试精度: {test_acc:.4f}")plt.figure(figsize=(10, 6))plt.plot(train_losses, label='train', color='blue', linestyle='-', marker='.')plt.plot(test_losses, label='test', color='purple', linestyle='--', marker='.')plt.plot(test_acces, label='train_acc', color='red', linestyle='--', marker='.')plt.xlabel('epoch')plt.ylabel('loss & acc')plt.title('Test Loss and Train Accuracy over Epochs')plt.legend()plt.grid(True)plt.ylim(0, 1)  # 设置y轴的范围从0到1plt.show()

实例是 深度学习_11_softmax_图片识别代码&原理解析 和 深度学习_14_单层|多层感知机及代码实现 两者代码结合,为了达到过拟合效果,所以上述代码是三层感知机,在原先两层感知机的条件下多加了一层,这样模型就会过拟合,再用丢弃法调整上述三层感知机

代码讲解:

丢弃函数

def dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)

求模型损失函数

def evaluate_loss(net, data_iter, loss):metric = d2l.Accumulator(2)for X, y in data_iter:out = net(X)# y = y.float()l = loss(out, y)metric.add(l.sum(), l.numel())return metric[0] / metric[1]

其他不再赘述

过拟合:

在这里插入图片描述
在正常情况下,模型测试损失波动比较大,存在过拟合现象

丢弃法调整过拟合:
在这里插入图片描述

丢弃率都是0.7,测试损失比较稳定,过拟合被缓解
在这里插入图片描述
丢弃率0.2和0.7的效果

补充:

代码1:

import torch
import torch.nn as nn# 创建一个均方误差损失函数,使用 'sum' reduction
loss_fn = nn.MSELoss(reduction='none')# 生成一些示例数据
predictions = torch.randn(3, requires_grad=True)
targets = torch.randn(3)# 计算均方误差损失
loss = loss_fn(predictions, targets)# 通过对损失张量调用 .sum() 也可以得到相同的结果
loss_sum = loss_fn(predictions, targets).sum()# 打印两者的值
print(loss)  # 输出总体均方误差损失值
print(loss_sum.item())  # 输出通过 .sum() 得到的总体均方误差损失值

在这里插入图片描述

损失函数求得是每个样本的损失所以两者输出不一样

代码2:

import torch
import torch.nn as nn# 创建一个均方误差损失函数,使用 'sum' reduction
loss_fn = nn.MSELoss(reduction='sum')# 生成一些示例数据
predictions = torch.randn(3, requires_grad=True)
targets = torch.randn(3)# 计算均方误差损失
loss = loss_fn(predictions, targets)# 通过对损失张量调用 .sum() 也可以得到相同的结果
loss_sum = loss_fn(predictions, targets).sum()# 打印两者的值
print(loss.item())  # 输出总体均方误差损失值
print(loss_sum.item())  # 输出通过 .sum() 得到的总体均方误差损失值

在这里插入图片描述

损失函数求得是整体样本的损失和再加.sum()无效,所以两者输出相同

这篇关于深度学习_17_丢弃法调整过拟合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768684

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.