MATLAB环境下基于图像处理的计算病理学图像分割(MATLAB R2021B)

2024-03-03 05:44

本文主要是介绍MATLAB环境下基于图像处理的计算病理学图像分割(MATLAB R2021B),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工智能是病理学诊断和研究的重要新兴方法,其不仅可用于病理形态数据分析,还可整合免疫组化、分子检测数据和临床信息,得出综合的病理诊断报告,为患者提供预后信息和精准的药物治疗指导。计算病理学是病理学与AI、计算机视觉等信息技术交叉形成的细分研究领域,其概念形成于2014年,并迅速成为医学图像分析领域的研究热点。计算病理模型可批量化分析活检样本、突显细微的异常模式,减小观察者组内与组间差异性,并在基础研究中帮助理解疾病背后的生物学机制。

计算病理学是利用图像处理与AI技术对病理图像进行分析,以实现结构单元的识别与定量化。根据切片类型,计算病理学研究可分为组织病理图像分析、免疫组化图像分析和细胞病理图像分析。总体而言,计算病理的最终目的是通过自动图像分析技术辅助诊断、定量评估以及决策。为实现上述目的,计算病理学研究对象的粒度可从图像的单个像素到患者预后、治疗响应等宏观信息,具有不同的信息抽象程度。因此,以组织病理图像分析为例,可以将计算病理研究分为图像预处理、癌灶检测、组织学成分识别、细胞检测、分子亚型预测以及预后预测等方面,其亦可用于免疫组化图像与细胞病理图像分析。

鉴于此,提出一种基于图像处理的计算病理学图像分割方法,运行环境为MATLAB R2021B,主要内容如下:

Part 1: Handling gigapixel-sized WSIs

Create blockedImageDatastore at Specific level and Block Size

Create a blockedImage.

Inspect resolution levels

Create a blockedImageDatastore, specifying the resolution level and the blocksize.

Read all the blocks in the datastore.

Display the blocked image

Display the big image

Display the big image with grid lines indicating blocks

Part 2: Useful pre- and post-processing operations on WSIs in MATLAB

Tissue Identification

Tile Sampling

Regular grid

Overlapping patches

Random patches

Prediction Cleaning

Additional morphological operations for image post-processing

部分代码如下:

tumorImage = bim;
levelSizeInfo = table((1:length(tumorImage.Size))', ...tumorImage.Size(:,1), ...tumorImage.Size(:,2), ...tumorImage.Size(:,1)./tumorImage.Size(:,2), ...'VariableNames',["Resolution Level" "Image Width" "Image Height" "Aspect Ratio"])bls = selectBlockLocations(bim,"Levels",2,"BlockSize",[512, 512]);
bimds = blockedImageDatastore(bim, "BlockLocationSet", bls);

出图如下:

完整代码:MATLAB环境下基于图像处理的计算病理学图像分割(MATLAB R2021B)

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于MATLAB环境下基于图像处理的计算病理学图像分割(MATLAB R2021B)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768636

相关文章

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col