运筹学_1.1.4 线性规划问题-解的概念

2024-03-03 01:20

本文主要是介绍运筹学_1.1.4 线性规划问题-解的概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1.4 线性规划问题-解的概念

  • 一、可行解与最优解
  • 二、基的概念
  • 三、基变量、基向量;非基变量、非基向量;基解、基可行解;
  • 四、最优解与可行解、基可行解的关系
  • 五、用例题(枚举法)巩固基解、基可行解、最优解三个概念
    • 1、例1
    • 2、例2
  • 六、解之间的关系归纳

一、可行解与最优解

在这里插入图片描述

可行解:满足所由约束条件的解【全部可行解的集合称为可行域】
最优解:使目标函数最大的可行解
因此最优解包含于可行解

二、基的概念

:设A是约束方程组(2)的m×n阶系数矩阵(设n>m变量的个数大于方程的个数),其秩为m
B是A中的一个m×m阶的满秩子矩阵(|B|≠0的非奇异子矩阵),则称B为线性规划问题的一个基。
B实际上就是A的一个极大线性无关组

问题1:为什么秩就为m?
实际过程中,在建模时列约束条件,默认列出来的方程为独立方程(而不会出现两个方程化简后相同的无效方程情况)

问题2:为什么n>m?
实际情况中,决策变量的个数通常也是大于方程的个数

在这里插入图片描述

三、基变量、基向量;非基变量、非基向量;基解、基可行解;

设方程组有m个方程,n个变量,其中n>m.R(A)=m,方程组有n-m个自由未知量,即方程组一定有无穷多个解。
n=m时只有唯一解,实际情况很少出现。

在这里插入图片描述

假设:方程组中前m个变量的系数列向量就是它的基向量(极大线性无关组)
则把(n-m)个非基向量移项到右边

在这里插入图片描述

非基变量可以是任意常数,因此令所有非基变量为0,又因为|B|≠0,据克莱姆法则,可求出唯一解;
从而得到第一个初始解XB
则X=(XB,XN)

在这里插入图片描述
在这里插入图片描述

因此,在约束方程组中的系数矩阵中找到一个基,就能求出一组基解

在这里插入图片描述

基解不一定是可行解
基解:根据基求得的解
基可行解:基解中所有分量都满足非负条件的解
可行基:对应于基可行解的基

四、最优解与可行解、基可行解的关系

最优解一定在可行解当中,那最优解一定包含在基可行解中吗?
1、当最优解唯一时,最优解也是基最优解;
2、当最优解不唯一时,最优解不一定是基最优解

在这里插入图片描述

五、用例题(枚举法)巩固基解、基可行解、最优解三个概念

基的数目为:C(m,n)- 行列式为0的矩阵数,
基可行解为:分量都为非负的基解

1、例1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、例2

在这里插入图片描述

六、解之间的关系归纳

可以用图解法辅助理解

在这里插入图片描述

这篇关于运筹学_1.1.4 线性规划问题-解的概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768021

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例