运筹学_1.1.4 线性规划问题-解的概念

2024-03-03 01:20

本文主要是介绍运筹学_1.1.4 线性规划问题-解的概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1.4 线性规划问题-解的概念

  • 一、可行解与最优解
  • 二、基的概念
  • 三、基变量、基向量;非基变量、非基向量;基解、基可行解;
  • 四、最优解与可行解、基可行解的关系
  • 五、用例题(枚举法)巩固基解、基可行解、最优解三个概念
    • 1、例1
    • 2、例2
  • 六、解之间的关系归纳

一、可行解与最优解

在这里插入图片描述

可行解:满足所由约束条件的解【全部可行解的集合称为可行域】
最优解:使目标函数最大的可行解
因此最优解包含于可行解

二、基的概念

:设A是约束方程组(2)的m×n阶系数矩阵(设n>m变量的个数大于方程的个数),其秩为m
B是A中的一个m×m阶的满秩子矩阵(|B|≠0的非奇异子矩阵),则称B为线性规划问题的一个基。
B实际上就是A的一个极大线性无关组

问题1:为什么秩就为m?
实际过程中,在建模时列约束条件,默认列出来的方程为独立方程(而不会出现两个方程化简后相同的无效方程情况)

问题2:为什么n>m?
实际情况中,决策变量的个数通常也是大于方程的个数

在这里插入图片描述

三、基变量、基向量;非基变量、非基向量;基解、基可行解;

设方程组有m个方程,n个变量,其中n>m.R(A)=m,方程组有n-m个自由未知量,即方程组一定有无穷多个解。
n=m时只有唯一解,实际情况很少出现。

在这里插入图片描述

假设:方程组中前m个变量的系数列向量就是它的基向量(极大线性无关组)
则把(n-m)个非基向量移项到右边

在这里插入图片描述

非基变量可以是任意常数,因此令所有非基变量为0,又因为|B|≠0,据克莱姆法则,可求出唯一解;
从而得到第一个初始解XB
则X=(XB,XN)

在这里插入图片描述
在这里插入图片描述

因此,在约束方程组中的系数矩阵中找到一个基,就能求出一组基解

在这里插入图片描述

基解不一定是可行解
基解:根据基求得的解
基可行解:基解中所有分量都满足非负条件的解
可行基:对应于基可行解的基

四、最优解与可行解、基可行解的关系

最优解一定在可行解当中,那最优解一定包含在基可行解中吗?
1、当最优解唯一时,最优解也是基最优解;
2、当最优解不唯一时,最优解不一定是基最优解

在这里插入图片描述

五、用例题(枚举法)巩固基解、基可行解、最优解三个概念

基的数目为:C(m,n)- 行列式为0的矩阵数,
基可行解为:分量都为非负的基解

1、例1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、例2

在这里插入图片描述

六、解之间的关系归纳

可以用图解法辅助理解

在这里插入图片描述

这篇关于运筹学_1.1.4 线性规划问题-解的概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768021

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

Nginx概念、架构、配置与虚拟主机实战操作指南

《Nginx概念、架构、配置与虚拟主机实战操作指南》Nginx是一个高性能的HTTP服务器、反向代理服务器、负载均衡器和IMAP/POP3/SMTP代理服务器,它支持高并发连接,资源占用低,功能全面且... 目录Nginx 深度解析:概念、架构、配置与虚拟主机实战一、Nginx 的概念二、Nginx 的特点

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失