1.2 处理类别型特征(序号编码、独热编码、二进制编码)

2024-03-02 20:28

本文主要是介绍1.2 处理类别型特征(序号编码、独热编码、二进制编码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

02 知识点:类别型特征(序号编码、独热编码、二进制编码)

知识点:序号编码(Ordinal Encoding)、独热编码(One-hot Encoding)、二进制编码(Binary Encoding)

摘要类别型特征指的是在有限选项内取值的特征。处理方法有:序号编码、独热编码、二进制编码。

场景描述

类别型特征(Categorical Feature)主要是指性别(男、女)、血型(A、B、AB、O)等只在有限选项内取值的特征

类别型特征原始输入通常是字符串形式,除了决策树等少数模型能直接处理字符串形式的输入,对于逻辑回归、支持向量机等模型来说,类别型特征必须经过处理转换成数值型特征才能正确工作

问题:在对数据进行预处理时,应该怎样处理类别型特征?(难度:2颗星)

分析与解答
  • 序号编码

    ​ 序号编码通常用于处理类别间具有大小关系的数据

    例如成绩,可以分为低、中、高三档,并且存在“高>中>低”的排序关系。序号编码会按照大小关系对类别型特征赋予一个数值ID,例如高表示为3、中表示为2、低表示为1,转换后依然保留了大小关系。

  • 独热编码
    独热编码通常用于处理类别间不具有大小关系的特征

    例如血型,一共有4个取值(A型血、B型血、AB 型血、O型血),独热编码会把血型变成一个4维稀疏向量,A 型血表示为(1,0,0,0),B 型血表示为(0,1,0,0),AB型表示为(0,0,1,0),O型血表示为(0,0,0,1)。

    对于类别取值较多的情况下使用独热编码需要注意以下问题。

    (1) 使用稀疏向量来节省空间。

    在独热编码下,特征向量只有某一维取值为1,其他位置取值均为0。因此可以利用向量的稀疏表示有效地节省空间,并且目前大部分的算法均接受稀疏向量形式的输入。

    (2) 配合特征选择来降低维度。

    高维度特征会带来几方面的问题。一是在K近邻算法中,高维空间下两点之间的距离很难得到有效的衡量;二是在逻辑回归模型中,参数的数量会随着维度的增高而增加,容易引起过拟合问题;三是通常只有部分维度是对分类、预测有帮助,因此可以考虑配合特征选择来降低维度。

  • 二进制编码

    二进制编码主要分为两步,先用序号编码给每个类别赋予一个类别ID,然后将类别ID对应的二进制编码作为结果。

    以A、B、AB、O血型为例,表1.1是二进制编码的过程。A 型血的ID 为1,二进制表示为001;B型血的ID为2,二进制表示为010;以此类推可以得到AB型血和O型血的二进制表示。

    可以看出,二进制编码本质上是利用二进制对ID进行哈希映射,最终得到0/1特征向量,且维数少于独热编码,节省了存储空间。

    在这里插入图片描述

除了本章介绍的编码方法外,有兴趣的读者还可以进一步了解其他的编码方式,比如Helmer t Contrast、Sum Contrast、PolynomialContrast、Backward Difference Contrast等。

参考文献:
《百面机器学习》 诸葛越主编
出版社:人民邮电出版社(北京)
ISBN:978-7-115-48736-0
2022年1月北京第19次印刷

这篇关于1.2 处理类别型特征(序号编码、独热编码、二进制编码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767327

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建