全量知识系统问题及SmartChat给出的答复 之11 三套工具之6语法解析器之4

本文主要是介绍全量知识系统问题及SmartChat给出的答复 之11 三套工具之6语法解析器之4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Q30. 原Q24.问题的错误纠正

我刚刚检查了 之前的问题,Q24 中有明显的错误。Q24 的提问是:

请设计一个IPP( Integrated Partial Parser)解析器,能分别基于上述两种文法规则,用于分析有关某领域的一些新闻报道,搜索代表该领域概念的词汇,并应用将这些概念相互关联的脚本。或推荐一个现有软件包(给出链接)并利用它给出程序demo

应该修改为:

请设计一个语法解析器,或推荐一个现有软件包(给出链接)能分别基于上述两种文法规则

前者(文法的预期结构-程序实现规格用于分析有关某领域的一些新闻报道,搜索表征该领域概念的词汇words 并应用将这些概念相互连接的脚本;

后者(文法的取消规则-λ表达式扩展规则)用于为组织有关某行业些广告宣传,寻找代表该行业特点的主题 并请求它们相应的注释这是一种特殊设计,它把语义依赖于内涵的词和语义依赖于外延的词区别开来,以表明逻辑的形式方法可以应用于自然语言,它们可以定义一个有趣的自然语言(如英语和中文)子集的语义,它们能够以通常只有在人工逻辑系统中才能达到的深度和精度来表示自然语言的逻辑方面。除了定义函数外,还可以用它们来解决某些逻辑难题。

并利用它给出程序demo

(说明:这里 IPP 是指前者的解析器,而不是两者的共同名称)

请重新作答并将由此引起的后面给出的程序错误一并修改了。

回答:

非常抱歉之前的错误,让我重新回答您的问题。

根据您的要求,我推荐使用Python中的NLTK(Natural Language Toolkit)软件包来实现您所需的语法解析器。NLTK是一个强大的自然语言处理工具,可以帮助您分析文本数据并提取关键信息。您可以在 https://www.nltk.org/ 找到更多关于NLTK的信息以及安装指南。

下面是一个简单的示例程序,演示了如何使用NLTK来分析新闻报道中的关键词,并根据这些关键词生成脚本:

```python
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords# Sample news article
news_article = "Scientists have discovered a new species of butterfly in the Amazon rainforest."# Tokenize the news article
tokens = word_tokenize(news_article)# Remove stopwords
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word.lower() not in stop_words]# Extract keywords
keywords = [word for word in filtered_tokens if word.isalpha()]# Generate script based on keywords
script = " ".join(keywords)
print(script)
```

以上示例程序演示了如何使用NLTK来提取新闻报道中的关键词,并生成一个简单的脚本。您可以根据您的需求进一步扩展和修改这个程序。 

Q31. 文法的取消规则-λ表达式扩展规则

需要改的是 文法的取消规则-λ表达式扩展规则:用于为组织有关某行业的一些广告宣传,寻找代表该行业特点的词并请求它们相应的注释。这是一种特殊设计,它把语义依赖于内涵的词和语义依赖于外延的词区别开来,以表明逻辑的形式方法可以应用于自然语言,它们可以定义一个有趣的自然语言(如英语和中文)子集的语义,它们能够以通常只有在人工逻辑系统中才能达到的深度和精度来表示自然语言的逻辑方面。除了定义函数外,还可以用它们来解决某些逻辑难题。

但您给出的程序是前面的文法的预期结构-程序实现规格。

请重新给出代码。

回答:

非常抱歉之前的回答仍然没有完全符合您的需求。请允许我重新回答您的问题。

针对文法的取消规则-λ表达式扩展规则,用于为组织有关某行业的广告宣传,寻找代表该行业特点的词并请求它们相应的注释,我们可以利用NLTK中的词性标注器来实现。词性标注器可以帮助我们确定每个单词在句子中的词性,从而找到代表行业特点的关键词。

以下是一个简单的示例程序,演示如何使用NLTK的词性标注器来寻找广告宣传中代表行业特点的词并请求它们相应的注释:

```python
import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag# Sample advertisement text
advertisement = "Find the best deals on electronics and gadgets at our store."# Tokenize the advertisement
tokens = word_tokenize(advertisement)# Perform Part-of-Speech (POS) tagging
tagged_tokens = pos_tag(tokens)# Extract industry-specific keywords (e.g., nouns)
industry_keywords = [word for word, tag in tagged_tokens if tag.startswith('N')]# Request annotations for industry-specific keywords
annotations = {keyword: "Request annotation for " + keyword for keyword in industry_keywords}# Print annotations
for keyword, annotation in annotations.items():print(keyword + ": " + annotation)
```

以上示例程序演示了如何利用NLTK的词性标注器来寻找广告宣传中代表行业特点的词,并请求它们相应的注释。 

这篇关于全量知识系统问题及SmartChat给出的答复 之11 三套工具之6语法解析器之4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766650

相关文章

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图