从metashape导出深度图,从深度图恢复密集点云

2024-03-02 15:44

本文主要是介绍从metashape导出深度图,从深度图恢复密集点云,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从metashape导出深度图,从深度图恢复密集点云

1.从metashape导出深度图

参考:https://blog.csdn.net/WHU_StudentZhong/article/details/123107072?spm=1001.2014.3001.5502

2.从深度图建立密集点云

首先从metashape导出blockExchange格式的xml文件,里面记录了相机的内外参等信息
file->export->export camera
下面就开始上代码

import numpy as np
import xml.etree.ElementTree as ET
import os
import cv2def write_point_cloud(ply_filename, points):formatted_points = []for point in points:formatted_points.append("%f %f %f %d %d %d 0\n" % (point[0], point[1], point[2], point[3], point[4], point[5]))out_file = open(ply_filename, "w")out_file.write('''plyformat ascii 1.0element vertex %dproperty float xproperty float yproperty float zproperty uchar blueproperty uchar greenproperty uchar redproperty uchar alphaend_header%s''' % (len(points), "".join(formatted_points)))out_file.close()def depth_image_to_point_cloud(rgb, depth, scale, K, pose):u = range(0, rgb.shape[1])v = range(0, rgb.shape[0])u, v = np.meshgrid(u, v)u = u.astype(float)v = v.astype(float)Z = depth.astype(float) / scaleX = (u - K[0, 2]) * Z / K[0, 0]Y = (v - K[1, 2]) * Z / K[1, 1]X = np.ravel(X)Y = np.ravel(Y)Z = np.ravel(Z)valid = (Z > 0) & (Z < 300)# 计算 valid 中有效元素的数量valid_count = np.count_nonzero(valid)# 打印结果print("有效元素的数量:", valid_count)X = X[valid]Y = Y[valid]Z = Z[valid]position = np.vstack((X, Y, Z, np.ones(len(X))))position = np.dot(pose, position)R = np.ravel(rgb[:, :, 0])[valid]G = np.ravel(rgb[:, :, 1])[valid]B = np.ravel(rgb[:, :, 2])[valid]points = np.transpose(np.vstack((position[0:3, :], R, G, B))).tolist()return pointsdef getDepth(position,depth, scale, K, pose):inverse_pose = np.linalg.inv(pose)position_camera=np.dot(inverse_pose, position)Z = position_camera[2]*scaleu=round(position_camera[0]*K[0, 0]/Z+K[0, 2])v=round(position_camera[1]*K[1, 1]/Z+K[1, 2])z=depth[v][u]return Z# image_files: XXXXXX.jpg (RGB, 24-bit, jpg)
# depth_files: XXXXXX.tif (32-bit, tif)
# poses: camera-to-world, 4×4 matrix in homogeneous coordinates
def build_point_cloud(K,dist_coeffs, scale, view_ply_in_world_coordinate,images,dataPath):images_path = os.path.join(dataPath, 'undistort')depth_path = os.path.join(dataPath, 'depth')for id, image in images.items():# 获取文件所在的文件夹路径image_name=os.path.join(images_path,image['imgName'])depth_name=os.path.join(depth_path,image['imgName'])depth_name=os.path.splitext(depth_name)[0]depth_name = depth_name + '.tif'rgb = cv2.imread(image_name)depth = cv2.imread(depth_name, cv2.IMREAD_UNCHANGED)height, width = depth.shape[:2]# # 创建深度图畸变映射# mapx, mapy = cv2.initUndistortRectifyMap(K, dist_coeffs, None, None, (width,height), cv2.CV_32FC1)# # 应用映射# depth = cv2.remap(depth, mapx, mapy, interpolation=cv2.INTER_NEAREST)rgb_resized=cv2.resize(rgb,(width, height))# # 创建rgb畸变映射# mapx, mapy = cv2.initUndistortRectifyMap(K, dist_coeffs, None, None, (width,height), cv2.CV_32FC1)# rgb_resized = cv2.remap(rgb_resized, mapx, mapy, interpolation=cv2.INTER_NEAREST)depth_values = depth.astype(np.float32)#显示深度值范围print('最小深度值:', np.min(depth_values))print('最大深度值:', np.max(depth_values))if view_ply_in_world_coordinate:current_points_3D = depth_image_to_point_cloud(rgb_resized, depth, scale=scale, K=K, pose=image['trans_M'])else:current_points_3D = depth_image_to_point_cloud(rgb_resized, depth, scale=scale, K=K, pose=image['trans_M'])save_ply_name = os.path.basename(os.path.splitext(image_name)[0]) + ".ply"#save_ply_path = os.path.join(dataPath, "point_clouds_frompoint")save_ply_path = os.path.join(dataPath, "point_clouds_any")if not os.path.exists(save_ply_path):  # 判断是否存在文件夹如果不存在则创建为文件夹os.mkdir(save_ply_path)write_point_cloud(os.path.join(save_ply_path, save_ply_name), current_points_3D)def compute_K_matrix(focal_length, principal_point_x, principal_point_y):"""计算内参数矩阵 K参数:focal_length:焦距principal_point_x: 主点在 x 方向上的像素坐标principal_point_y: 主点在 y 方向上的像素坐标skew: 像素间的 skew factor,默认为 0返回值:K 矩阵"""K = np.array([[focal_length, 0, principal_point_x],[0, focal_length, principal_point_y],[0, 0, 1]])return Kdef loadAllfrom_xml(path):# 解析 XML 文件doc = ET.parse(path)root = doc.getroot()# 初始化相机和图像列表cameras = {}images = {}# 查找相机元素photogroups = root.find(".//Photogroups")if photogroups is None:print("error: invalid scene file")return False# 解析相机信息for photogroup in photogroups.findall("Photogroup"):camera_model_type = photogroup.find("CameraModelType")if camera_model_type is None or camera_model_type.text != "Perspective":continueimage_dimensions = photogroup.find("ImageDimensions")if image_dimensions is None:continuewidth = int(image_dimensions.find("Width").text)height = int(image_dimensions.find("Height").text)resolution_scale = max(width, height)focal_length_pixels = photogroup.find("FocalLengthPixels")if focal_length_pixels is not None:f = float(focal_length_pixels.text)else:focal_length = float(photogroup.find("FocalLength").text)sensor_size = float(photogroup.find("SensorSize").text)f = focal_length * resolution_scale / sensor_sizeprincipal_point = photogroup.find("PrincipalPoint")if principal_point is not None:cx = float(principal_point.find("x").text) cy = float(principal_point.find("y").text)pxl_size = 1# 解析畸变参数distortion = photogroup.find("Distortion")k1 = k2 = k3 = p1 = p2 = 0if distortion is not None:k1_elem = distortion.find("K1")if k1_elem is not None:k1 = float(k1_elem.text)k2_elem = distortion.find("K2")if k2_elem is not None:k2 = float(k2_elem.text)k3_elem = distortion.find("K3")if k3_elem is not None:k3 = float(k3_elem.text)p1_elem = distortion.find("P1")if p1_elem is not None:p1 = float(p1_elem.text)p2_elem = distortion.find("P2")if p2_elem is not None:p2 = float(p2_elem.text)  camera = {'width': width, 'height': height, 'f': f, 'cx': cx, 'cy': cy, 'pxlSize': pxl_size,'k1': k1, 'k2': k2, 'k3': k3, 'p1': p2, 'p2': p1}cameras[1] = camera# 解析图像信息for photo in photogroup.findall("Photo"):img_id = int(photo.find("Id").text)image_path = photo.find("ImagePath").textfound = image_path.rfind("/")img_name = image_path[found + 1:]photo_pose = photo.find("Pose")if photo_pose is None:continuerotation = photo_pose.find("Rotation")if rotation is None:continuerotation_matrix = np.array([[float(rotation.find("M_00").text), float(rotation.find("M_01").text),float(rotation.find("M_02").text)],[float(rotation.find("M_10").text),float(rotation.find("M_11").text), float(rotation.find("M_12").text)],[float(rotation.find("M_20").text), float(rotation.find("M_21").text),float(rotation.find("M_22").text)]])center = photo_pose.find("Center")if center is None:continueXs = float(center.find("x").text)Ys = float(center.find("y").text)Zs = float(center.find("z").text)position= np.array([Xs,Ys,Zs])trans=create_transformation_matrix(rotation_matrix,position)img = {'iid': img_id,'image_path':image_path, 'imgName': img_name,'R':rotation_matrix,'Xs': Xs, 'Ys': Ys, 'Zs': Zs,'trans_M':trans}images[img_id] = imgreturn images, camerasdef create_transformation_matrix(rotation_matrix, translation_vector):# 创建一个 4x4 的单位矩阵transformation_matrix = np.eye(4)transformation_matrix[:3, :3] = rotation_matrix.T#将rotation求逆transformation_matrix[:3, 3] = translation_vectorreturn transformation_matriximages, cameras = loadAllfrom_xml('pos_undistort.xml')
K=compute_K_matrix(cameras[1]['f'],cameras[1]['cx'],cameras[1]['cy'])
dist_coeffs = np.array([cameras[1]['k1'],cameras[1]['k2'], cameras[1]['p1'], cameras[1]['p2'], cameras[1]['k3']])view_ply_in_world_coordinate = True
K=K*0.5
K[2][2]=1build_point_cloud(K,dist_coeffs*0.5,1,view_ply_in_world_coordinate,images,'G:\\graduate2024\\experiment\\test')

需要注意的是,如果深度图的width height和rgb影像存在一个比例关系scale,则K也需要进行相应的尺度变换,例如,我使用的深度图长宽是rgb影像的一半,那么我的K乘以了一个0.5
另外由于我的影像已经事先去除了畸变,其畸变系数为0,因此此代码没有提供去除影像畸变的部分,需自行添加

这篇关于从metashape导出深度图,从深度图恢复密集点云的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766631

相关文章

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总