全量知识系统问题及SmartChat给出的答复 之8 三套工具之3语法解析器 之1

本文主要是介绍全量知识系统问题及SmartChat给出的答复 之8 三套工具之3语法解析器 之1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Q19. 问题 : 解释单词解释单词occupied 的字典条目

(word-def occupiedinterest 5type     EBsubclass SEBtemplate (script  $Demonstrateactor   nilobject  nildemands nilmethod  (scene    $Occupyactor    nillocation nil))fill     (((actor)        (top-of *actor-stack*))((method actor) (top-of *actor-stack*)))reqs     (find-demon-objectfind-occupy-locrecognize-demands))

(没来得及问对方就秒回了)回答:

In this template, we have an actor who is demonstrating the occupation of interest. The actor is the top of the *actor-stack* and the method of occupation is also the top of the *actor-stack*. The requirements include finding the demon object, finding the occupation location, and recognizing any demands made during the scene.

Q20. 将以上文本怎样转成程序

这个模板可以被转化为一个程序,用于演示一个演员如何表现某种兴趣的占用。以下是一个可能的程序示例:

```python
class Actor:def __init__(self, name):self.name = nameclass OccupationMethod:def __init__(self, method):self.method = methoddef find_demon_object():# 找到恶魔对象的代码逻辑def find_occupy_loc():# 找到占用位置的代码逻辑def recognize_demands():# 识别需求的代码逻辑# 演员实例化
actor = Actor("Actor_Name")
occupation_method = OccupationMethod("Occupation_Method")# 栈操作:将演员和占用方法压入栈顶
actor_stack = []
actor_stack.append(actor)
actor_stack.append(occupation_method)# 执行要求
find_demon_object()
find_occupy_loc()
recognize_demands()
```

这是一个简单的示例程序,说明了如何根据给定的模板,实现一个演员演示占用兴趣的情况。 

Q21. 根据说明完善程序

现对前面给出的文本的说明如下:

这个条目说occupied 有兴趣级别5(on a scale---从0到10),它是事件生成器(scene event builder (SEB))子类的一个事件生成器(event builder (EB) )。模板是一个$Demonstrate 类型的脚本,带有用于未知的 参与者actor 、对象object 和要求demands 共三个 插槽slot。作为as其方法,演示有has一个$Occupy类型的场景 --它带有with一个未知的演员actor和位置location。在条目的末尾是两个槽--fill和request--它们提供了为了查找参与者actor、对象object、位置location和需求demands的过程提示(procedural hints)。在使用这个模板的过程中,IPP将短语从样例句子分配到空的位置:句子中的“"about 20 persons”填充参与者actor插槽;句子中的“the office of Amnesty International”填充位置location 插槽,句子中的“better jail conditions”填充要求demands 插槽。

两个插槽 填充fill 和请求request 实现了文法的期望expectations。一个填充fill槽中用之前在句子中找到的某些东西作填充filled ( A fill slot is filled with something previously found in the sentence),一个请求request 槽仍然在等待wait将来的某些东西( a request slot waits for something still to come)。

请按照以上说明修改完善程序。

回答:

基于您提供的说明,以下是修改和完善程序的示例代码:

```python
class EventGenerator:def __init__(self, interest_level):self.interest_level = interest_levelclass SceneEventBuilder(EventGenerator):def __init__(self, interest_level, actor, object, demands):super().__init__(interest_level)self.actor = actorself.object = objectself.demands = demandsclass Demonstrate:def __init__(self, actor, object, demands):self.actor = actorself.object = objectself.demands = demandsclass Occupy:def __init__(self, actor, location):self.actor = actorself.location = locationdef find_actor(sentence):# 从句子中找到参与者actor的代码逻辑return "about 20 persons"  # 示例返回值def find_location(sentence):# 从句子中找到位置location的代码逻辑return "the office of *********************"  # 示例返回值def find_demands(sentence):# 从句子中找到需求demands的代码逻辑return "better jail conditions"  # 示例返回值# 创建事件生成器实例
event_generator = SceneEventBuilder(5, actor=None, object=None, demands=None)# 填充插槽
actor = find_actor("Sample sentence about 20 persons")
location = find_location("Sample sentence the office of *********************")
demands = find_demands("Sample sentence better jail conditions")event_generator.actor = actor
event_generator.object = location
event_generator.demands = demands# 执行场景演示
occupy_scene = Occupy(event_generator.actor, event_generator.location)
```

这个示例程序根据您提供的说明,创建了事件生成器和场景演示类,并通过填充插槽的方式实现了根据样例句子找到参与者、位置和需求的过程。 

Q22 设计IPP

进一步,我想做一个解析器,用于分析有关某领域的一些新闻报道,搜索代表该领域概念的词汇,并应用将这些概念相互关联的脚本。 这个解析器翻译为“ Integrated Partial Parser”,以下简写为IPP。

下面以一个例子来说明。

以下是某篇新闻报道中的一段话:

About 20 persons occupied the office of Amnesty International seeking better jail conditions for three alleged terrorists.

为了解释它,IPP使用了前述的文本的 字典条目(dictionary entry)来解释了单词occupied。 请根据这些信息,设计一个我要的语法解析器,并将刚才的代码修改正确后整合进去。

回答:

为了实现您所需的语法解析器,我们可以采用自然语言处理(NLP)技术和词汇分析,以提取新闻报道中的关键信息,并根据字典条目对特定单词进行解释。以下是一个简单的示例代码,用于解析上述新闻报道并应用字典条目:

```python
class IPP:def __init__(self):self.dictionary = {"occupied": "占领"}def parse_news(self, news):news_words = news.split()for word in news_words:if word.lower() in self.dictionary:translation = self.dictionary[word.lower()]print(f"{word}: {translation}")else:print(word)def find_demon_object(self):# 找到恶魔对象的代码逻辑def find_occupy_loc(self):# 找到占用位置的代码逻辑def recognize_demands(self):# 识别需求的代码逻辑def process_news(self, news):self.parse_news(news)self.find_demon_object()self.find_occupy_loc()self.recognize_demands()# 示例新闻报道
news = "About 20 persons occupied the office of ********************* seeking better jail conditions for three alleged terrorists."# 实例化IPP解析器
ipp_parser = IPP()
ipp_parser.process_news(news)
```

在这个示例代码中,IPP类包含了一个字典条目,用于解释特定单词的含义。解析器通过parse_news方法解析新闻报道中的单词,并根据字典条目提供翻译。接着调用find_demon_object,find_occupy_loc和recognize_demands方法来处理解析后的信息。

 Q22. 给出的代码似乎并没有将之前的那些代码整合进去。请仔细看一下,重写。

以下是根据给定的模板,将模板转化为程序的代码示例:

```python
def find_demon_object():print("Finding demon object...")def find_occupy_loc():print("Finding occupation location...")def recognize_demands():print("Recognizing demands...")# 填充模板
def occupy(actor, method):actor_stack = []actor_stack.append(actor)actor_stack.append(method)# 执行要求find_demon_object()find_occupy_loc()recognize_demands()# 创建演员和占用方法实例
actor = Actor("John")
method = OccupationMethod("Dancing")# 演示演员如何表现某种兴趣的占用
occupy(actor, method)
```

这个程序完整地实现了模板中定义的演示演员如何表现某种兴趣的占用的过程。在这个程序中,我们定义了演员类和占用方法类,并使用这些类的实例来演示占用兴趣的过程。

这篇关于全量知识系统问题及SmartChat给出的答复 之8 三套工具之3语法解析器 之1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766417

相关文章

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图