转载大神神作之识狗君:Server端实现

2024-03-01 23:59

本文主要是介绍转载大神神作之识狗君:Server端实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:

http://blog.csdn.net/mogoweb https://blog.csdn.net/mogoweb/article/details/86166435

当微信小程序遇上TensorFlow:Server端实现

 

 

 

又是一年一度的十一黄金旅游周,你是在景区看人从众叕,还是在高速公路上观看大妈打太极呢?旅游黄金周我一般是尽量不出门,这个十一也不例外。十月一日跑了一个半马迎接国庆,十月二号选择去了一个偏门的景点:张之洞与武汉博物馆。今天则宅在家,吃吃喝喝之余,琢磨起识别狗狗的微信小程序。

 

 

 

自打想到开发一款识别狗狗的app,我的第一直觉是应该开发一款微信小程序。相对于手机原生app,微信小程序具有开发和部署简单,特别是无需安装,即用即走,特别适合这种功能单一,偶尔用一用的app。

实现方案,首先想到的是TensorFlow.js,手机端实现深度学习,无需服务器端,但是TensorFlow.js并不支持微信小程序,无奈只得选择小程序 + server的模式。而我并不擅长web + server的开发,所以在《这个中秋,我开发了一个识别狗狗的app》中谈到,我先使用TensorFlow Lite实现了一个Android App。这个Android App 更多的是一个实验性的项目,这个国庆节,空余时间比较多,决定整一整微信小程序。

因为采用端加server的模式,图片识别在server端完成,所以主要功能实现在server端。我们就先来谈一谈Server端的实现。

TensorFlow Serving

Server端的实现方案有好多种,C++/Java/Python都可以,我一度甚至考虑采用Node.js实现。上周浏览Google开发者大会资料时发现,TensorFlow已经提供了服务器部署方案: TensorFlow Serving。

TensorFlow Serving是一种灵活的高性能服务系统,适用于机器学习模型,专为生产环境而设计。 TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API。 TensorFlow Serving提供与TensorFlow模型的一揽子集成方案,也可以轻松扩展以服务于其他类型的模型。

详细资料请访问: tensorflow.google.cn/serving/

TensorFlow Serving正在不断完善中,直接参考示例并不能实现需要的功能,在多方查找资料之后,终于把整个流程走通。

SavedModel

TensorFlow提供两种模型格式:

  • checkpoints,这是一种依赖于创建模型的代码的格式。
  • SavedModel,这是一种独立于创建模型的代码的格式。

SaveModel是一种与语言无关,可恢复的密封式序列化格式。TensorFlow提供了多种与SavedModel交互的机制,如tf.saved_model API、Estimator API和CLI。TensorFlow Serving需要使用SavedModel格式的模型文件。

retrain并保存为SavedModel

在《这个中秋,我开发了一个识别狗狗的app》一文中提到,我们不需要从头训练识别狗狗的深度学习模型,而是采用迁移学习,在现有模型的基础上再训练。考虑到模型是部署到服务器端,所以我选择了识别能力更强的Inception V3模型。

带标签的狗狗数据集采用stanford dog datasets,请自行下载并解压,然后执行如下命令进行训练:

python retrain.py --image_dir=./Images --saved_model_dir=models/inception_v3
复制代码

训练的模型保存于models/inception_v3/1,其中1是版本号,可以通过retrain.py脚本的命令行参数进行指定。

安装tensorflow model server

在Ubuntu下这个非常容易,只需要使用下面的命令即可:

sudo apt install tensorflow-model-server
复制代码

为了开发方便,需要安装TensorFlow Serving Python API:

pip install tensorflow-serving-api
复制代码

启动tensorflow model server

按照文档,启动tensorflow model server非常简单,这里加上rest_api_port参数是启动server,并提供RESTful API,这种API接口方便微信小程序与之进行通信。

tensorflow_model_server --rest_api_port=8501 --model_base_path=$PWD/models/inception_v3
复制代码

但是通过这种方法启动tensorflow model server,整了半天也没有和client进行上通讯,正在一筹莫展的时候,看到github上的一个项目:github.com/tobegit3hub…

 

 

 

简单说,Simple TensorFlow Serving是一个TensorFlow Serving的封装,是机器学习模型的通用且易于使用的服务。

其野心也很大,号称支持如下功能:

  • 支持分布式TensorFlow模型
  • 支持常规RESTful / HTTP API
  • 支持GPU加速推理
  • 支持curl和其他命令行工具
  • 支持客户端使用任何编程语言
  • 支持自动生成客户端代码,无需编码
  • 支持图像模型中使用原始图片文件进行推断
  • 支持详细请求的统计指标
  • 支持同时为多个模型提供服务
  • 支持动态的在线和离线模型版本
  • 支持为TensorFlow模型加载新的自定义操作
  • 通过可配置的基本身份验证支持安全身份验证
  • 支持TensorFlow / MXNet / PyTorch / Caffe2 / CNTK / ONNX / H2o / Scikit-learn / XGBoost / PMML 等多种模型

我最看中的就是它的自动生成客户端代码功能,在没有这个之前,我查找了很多资料,都没有搞定客户端与服务端之间的通信。另外它还提供了一个web界面,可以查看模型的结构以及signature(签名),这个signature也是折腾了我好久都没有搞定的。

浏览器访问: http://127.0.0.1:8500,web界面如下:

 

 

 

Simple TensorFlow Serving的安装非常简单:

pip install simple_tensorflow_serving
复制代码

接下来启动server:

simple_tensorflow_serving --model_base_path="./models/inception_v3" &
复制代码

客户端

微信小程序的开发还没有开始学,先用python写一个客户端先测试一下,我们可以使用自动生成客户端代码功能:

curl http://localhost:8500/v1/models/default/gen_client?language=python > test_client.py
复制代码

自动生成的代码如下:

#!/usr/bin/env pythonimport requestsdef main():endpoint = "http://ilego.club:8500"json_data = {"model_name": "default", "data": {"image": [[[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]]}}result = requests.post(endpoint, json=json_data)print(result.text)if __name__ == "__main__":main()
复制代码

可以看出,客户端向server端post一段JSON数据,并获取结果。在这段代码的基础上进行修改,加入图片读取,图片缩放并转换为JSON格式数据,即完成测试客户端代码,代码请参考: github.com/mogoweb/aie…

可以尝试测试一张狗狗图片:

python test_client.py --image=./Images/n02116738-African_hunting_dog/n02116738_1105.jpg
复制代码

结果如下:

n02116738 african hunting dog 0.780203342438
n02115913 dhole 0.0102733308449
n02092002 scottish deerhound 0.00600153999403
复制代码

前面是类别标签,后面是属于某个类别的概率,上面结果中Top 1概率0.78。

总结

这个服务器端远还没有达到完善,还存在一下问题:

  1. 客户端与服务器端的图片采用JSON格式传递,图像数据由二进制转为JSON字符串,空间效率低,后面考虑对图像数据进行base64编码。
  2. 预测的效率比较第,从发出请求到收到回应,有几十秒的时间,还没有查找瓶颈在何处。
  3. 并发支持,因为现在只是一个简单的测试,如果考虑到产品阶段,多个手机的微信小程序同时进行识别,这还是会有很多工作需要做的。

好了,关于服务端的开发部署就先到这里,下一篇文章我将谈谈微信小程序的开发和与server端的通信,敬请关注!

本文完整代码请参考:github.com/mogoweb/aie…

这篇关于转载大神神作之识狗君:Server端实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764268

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too