数电学习笔记——逻辑函数及其描述方法

2024-03-01 20:20

本文主要是介绍数电学习笔记——逻辑函数及其描述方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、逻辑函数

二、逻辑函数的描述方法

1、逻辑真值表

2、逻辑函数式

3、逻辑图

4、波形图

三、逻辑函数的两种标准形式

1、最小项与最大项

最小项

最小项的性质

最大项

最大项的性质

2、最大项与最小项的关系

3、逻辑函数的最小项之和形式

4、逻辑函数的最大项之和形式


一、逻辑函数

以逻辑变量作为输入,以运算结果作为输出,那么当输入确定时,输出也就确定下来了。这是一种函数关系,称为逻辑函数,其写作Y=F(A,B,C,...)

由于该函数的输入与输出只有0/1两种状态,所以它是二值逻辑函数。

二、逻辑函数的描述方法

1、逻辑真值表

此方法不作赘述,在之前的文章已经提到多次。

2、逻辑函数式

将输入与输出之间的逻辑关系式写成与、或、非等运算的组合式,即逻辑代数式,也就得到了逻辑函数式。

例如:Y=A(B+C)

3、逻辑图

将逻辑函数式中各变量之间的与、或、非等逻辑关系用图形符号表示出来,就可以画出描述函数关系的逻辑图。

例如:

图2.1 逻辑图

4、波形图

如果将逻辑函数输入变量每一种可能出现的取值与对应的输出值按时间顺序依次排序起来,就得到了描述该逻辑函数的波形图,也称时序图。

图2.2 波形图

卡诺图与硬件描述语言后面的文章再讲。

三、逻辑函数的两种标准形式

1、最小项与最大项

最小项

在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。n变量的最小项个数有 2^{n}个。

图3.1 三变量最小项的编号表

最小项是与运算,所以要使每一个因子都为1,最终值才能为1。

最小项的性质

①在输入变量的任何取值下必有一个最小项,而且仅有一个最小项的值为1;

②全体最小项之和为1;

③任意两个最小项的乘积为0;

④具有相邻性的两个最小项之和可以合并成一项并消去一对因子。

相邻性:若两个最小项只有一个因子不同,则称这两个最小项聚优品相邻性。比如A'BC'&ABC'就具有相邻性。

A'BC' + ABC' = (A+A')BC'=BC'-------------------------由公式A+A'=1得

最大项

在n变量逻辑函数中,若M为n个变量之和,而且这n个变量均以原变量或反变量的形式在M中出现一次,则称M为该组变量的最大项。

图3.2 三变量最大项的编号表

最大项的性质

①在输入变量的任何取值下必有一个最大项,而且只有一个最大项的值为0;

②全体最大项之和为0;

③任意两个最大项之和为1;

④只有一个变量不同的两个最大项的乘积等于各相同变量之和。

2、最大项与最小项的关系

M_{i}=m_{i}^{'}

3、逻辑函数的最小项之和形式

第一步:将给定的逻辑函数化成若干乘积项之和的与或形式(积之和);

第二步:利用公式A+A'=1将缺少的因子补全(凑出ABC)

例1:Y=ABC'+BC= m_{3}+m_{6}+m_{7}

也可以写作:Y(A,B,C)=Σm(3,6,7)

4、逻辑函数的最大项之和形式

第一步:将给定的逻辑函数化成若干乘积项之和的或与形式(和之积);

第二步:利用公式A·A'=0将缺少的因子补全(凑出ABC)

例2:Y=A'B+AC=(A+B+C)(A+B+C')(A'+B+C)(A'+B'+C)

也可以写作:Y(A,B,C,D)=ΠM(0,1,4,6)

若文章内容出现错误,恳请各位批评指正,感激不尽!

这篇关于数电学习笔记——逻辑函数及其描述方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763697

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处