CVPR 2022 | 大幅减少零样本学习所需人工标注,马普所和北邮提出富含视觉信息的类别语义嵌入...

本文主要是介绍CVPR 2022 | 大幅减少零样本学习所需人工标注,马普所和北邮提出富含视觉信息的类别语义嵌入...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

b882e86e2f107410530184b81f8c771b.gif

©作者 | 北京邮电大学、马普所

来源 | 机器之心

来自北京邮电大学、马普所等机构的研究者提出了类别嵌入发掘网络,提高了类别嵌入在视觉空间的完备性,对零样本学习中类别之间的知识转移有重要促进作用。

零样本学习旨在模仿人类的推理过程,利用可见类别的知识,对没有训练样本的不可见类别进行识别。类别嵌入(class embeddings)是描述类别语义和视觉特征的向量,能够实现知识在类别间的转移,因而在零样本学习中发挥着不可替代的作用。

36651a80bd8d5f5cf7f839f39218e5fe.png

 零样本分类图解

如上图所示,由于属性(attributes)能够被不同类别共享,促进了知识在类别间的转移,因此是使用最广泛的类别嵌入。并在其他计算机视觉任务(如面部识别、细粒度分类、时尚趋势预测)中被广泛用作辅助信息。 

然而属性标注过程需要大量人力投入和专家知识,限制了零样本学习在新数据集上的拓展。此外,受限于人类的认知局限,其标注的属性无法遍历视觉空间,因而图像中一些具有辨别性的特征无法被属性捕捉,导致零样本学习效果不佳。

针对以上问题,来自北京邮电大学、马普所等机构的研究者提出了类别嵌入发掘网络(Visually-Grounded Semantic Embedding Network, VGSE),本文主要回答了两个问题:1)如何从可见类图像中自动发掘具有语义和视觉特征的类别嵌入;2)如何在没有训练样本的情况下,为不可见类别预测类别嵌入。

cdf672d9709c123979c5ec5d858ff582.png

论文标题:

VGSE: Visually-Grounded Semantic Embeddings for Zero-Shot Learning

论文链接:

https://arxiv.org/abs/2203.10444

论文链接:

https://github.com/wenjiaXu/VGSE

为了充分挖掘不同类别之间共享的视觉特征,VGSE 模型将大量局部图像切片按其视觉相似度聚类形成属性簇,从图像底层特征中归纳不同类别实例所共享的视觉特征。此外 VGSE 模型提出类别关系模块,在少量外部知识源的辅助下学习类别关系,能够将知识从源类别转移到目标类别,为没有训练图像的目标类别预测其类别嵌入。

相较于其他基于语料自动挖掘而获得的属性,VGSE 模型在 CUB、SUN、AWA2 等零样本分类数据集上取得非常有竞争力的结果。如下图所示,本文能够发掘与人工标注属性互补的视觉特征,提高类别嵌入在视觉空间的完备性,对零样本学习中类别之间的知识转移有重要促进作用。本论文已被 CVPR 2022 录用。

c1143a52eed28be99b5762cc7ee4b966.png

93fc506fc5a6cf0ceef6a46ae9e4f54a.png

类别嵌入发掘模型

类别嵌入发掘模型 VGSE 的算法流程如下所示,该模型主要由两个模块组成:(1)切片聚类模块(Patch Clustering, PC)以训练数据集为输入,将图像切片聚类成不同的簇。(2)类别关系模块(Class Relation, CR)用于预测不可见类的语义嵌入。

b8b754e9333d86ad24757cde6e3bb86c.png

▲ VGSE 模型结构图

1.1 切片聚类模块

由于属性通常出现在图像的局部区域,例如动物的身体部位、场景中物体的形状和纹理等,因此本文提出利用图像局部切片的聚类来发掘视觉属性簇。为了获得覆盖整个语义图像区域(例如动物头部)的图像块,切片聚类模块通过无监督紧凑分水岭分割算法 [4] 将图像分割成规则形状的区域,然后利用图像切片的视觉相似性进行聚类。

切片聚类模块是可微分的深度神经网络,给定图像切片,网络首先提取图像的特征,之后通过聚类层 预测该特征被预测到每一个属性簇中的概率:

dc2ba231df3c8f90ecd4e7609e0d2779.png

本文基于视觉相似性的聚类损失函数训练该聚类网络。强制图像切片 及其相似切片集被聚类到同样的属性簇:

91de79f18a519e33980975a61a4847d3.png

为了增强类别嵌入的可辨别性,使其能够分辨类别之间的显著性差异,本文提出加入可辨别性信息,通过学习全连接层,将每张图片的预测映射为其类别预测概率,然后使用交叉熵损失训练模型:

735b15bde2904af31068d3baf3987856.png

本文旨在学习类别之间共享的属性簇,促进知识在类别之间的转移,因此鼓励属性簇蕴含类别之间的语义联系。为实现这个目标,通过学习全连接层S,将每张图片的嵌入映射为类别的语义标签(此处使用类别名称的 w2v 向量)。然后通过回归损失训练模型,以加强类别嵌入的语义联系:

ceb8dbe2614b188c6c78bfcc1978a5ce.png

最终,完整图像的图像嵌入是通过平均该图像中的所有切片的嵌入来计算得到:

4c3c3116e9eb3fad375bddfee7ff35ad.png

而类别 的嵌入由该类的所有图像嵌入平均而得:

7f98f5ace50b40956fee5692663b4646.png

1.2 类别关系模块

可见类的类别嵌入可以由切片聚类模块预测得到。但现实情况中存在着大量不可见类,其类别嵌入无法通过图像进行预测。由于语义相关的类别通常共享部分属性,例如熊猫和斑马共享 “黑白相间“属性,麋鹿和公牛都包含“角” 这一属性。本节提出学习可见类与不可见类之间的语义相似性,并通过语义相关的可见类来预测不可见类的嵌入。任何外部语义知识,例如 w2v、glove 等类别语义嵌入或人工标注的属性,都可以用来学习两个类之间的关系。下文以 w2v 为例说明所提出的类别关系发掘模块。

给定可见类的 w2v 语义标签,和不可见类别的语义标签,本节学习了相似性映射,其中表示目标类和第个源类别之间的相似性。相似性映射通过以下优化问题学习:

4b1bdb6f0f99b53a410bd3cb1507e35c.png

其中,目标类别的属性值是所有源类别属性值的加权和。

e54c312380ac74e2527cabed4b888898.png

实验结果

本文在三个通用零样本分类数据集(CUB、AWA2、SUN)上验证所提出方法的效果。

下图展示了在 AWA2 数据集中学习得到的属性簇。我们将 10,000 个图像切片的嵌入利用 t-SNE 映射到二维空间。本文采样了几个属性簇 (用相同颜色的点) 并在图中标记了来自该属性簇的图像切片。

f0061c998e7ebbff0b8fc6f687397842.png

▲ 挖掘属性簇可视化结果

图中数据说明了以下几点:首先,可以观察到同一簇中的图像切片倾向于聚集在一起,且传达了一致的视觉信息,这表明图像嵌入提供了可辨别性信息。此外,几乎所有属性簇都包含来自多个类别的图像切片。例如,来自不同动物的条纹,虽颜色略有不同但纹理相似。这一现象表明本文学习的类别嵌入包含类间共享的信息。另一个有趣的观察是,本文提出的模型能够发现被人类标注忽略的视觉属性,可以增强人类标注属性的视觉完备性。

Table 1 展示了本文提出的类别嵌入 VGSE-SMO 与类别的 w2v 向量在三个数据集上的表现。为测试两种类别嵌入的能力,我们 f-VAEGAN-D2[5]等五种零样本分类模型上进行实验,结果表明本文提出的类别嵌入能够大幅度超越 w2v 向量的性能。

9f93b5e0ba4d957f041e407750360ad5.png

Table 2 在零样本分类任务上对比了本文提出的类别嵌入和其他几种语料挖掘属性方法的效果,结果表明本文的方法在仅使用 w2v 向量的情况下,效果要优于其他使用在线语料库的方法。

306e3c53f56a2f0b05a01fc855fb5123.png

如前所述,本文提出的类别关系模块可以使用多种外部语义知识学习类别相似度,Table 4 展示了使用不同语义知识的效果。

9d2f3445c5479f2227e50ed817aaa9ed.png

本文进行用户调查探究所挖掘的类别嵌入的语义一致性和视觉一致性。随机挑选 50 个属性簇,并展示聚类中心的 30 张图片。用户首先被要求观察属性簇的示例图片。然后回答如下问题衡量属性簇的效果。

950768d77739e622a277fefea4206398.png

 用户调查界面

结果表明,在 88.5% 和 87.0% 的情况下,用户认为本方法所挖掘的属性簇传达出一致的视觉和语义信息。

804d63348431c3a0a3d0eafd2a4de5f5.png

总结

为减少零样本学习所需的人工标注,提高类别嵌入的语义和视觉完备性,本文提出一个自动的类别嵌入发掘网络 VSGE 模型,能够利用图像切片的视觉相似性发掘类别嵌入。在三个数据集上的结果表明,本文提出的类别嵌入方案能够有效地提高语义嵌入的质量,并且可以挖掘出人类难以标注的细粒度属性。除了在零样本学习中发挥重要作用,本文所提出的类别嵌入也能够为其它属性相关研究提供新思路。

outside_default.png

参考文献

outside_default.png

[1] Al-Halah, Ziad, and Rainer Stiefelhagen. "Automatic discovery, association estimation and learning of semantic attributes for a thousand categories." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

[2] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Proceedings of the Advances in neural information processing systems. 2013.

[3] Wang, Xiaolong, Yufei Ye, and Abhinav Gupta. "Zero-shot recognition via semantic embeddings and knowledge graphs." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[4] Neubert, Peer, and Peter Protzel. "Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms." Proceedings of the IEEE International Conference on Pattern Recognition. 2014.

[5] Xian, Yongqin, et al. "f-vaegan-d2: A feature generating framework for any-shot learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

更多阅读

674eb592fbc537702c9449e606dcf3e2.png

fdfe3ea9fe72813b9a2c864f926150a5.png

4e3db8f1a01d70945774375a0840698d.png

ba6101a0318ca5948330bcb35f033552.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

26263af3ce8922cb26452bd9cda29784.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

8a6e881646c0f1f0b27c1580d924d1b7.png

这篇关于CVPR 2022 | 大幅减少零样本学习所需人工标注,马普所和北邮提出富含视觉信息的类别语义嵌入...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763345

相关文章

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判