利用python批量将.shp文件转换坐标生成.geojson文件,再将.geojson转换成.csv文件,最后将csv文件插入数据库表

本文主要是介绍利用python批量将.shp文件转换坐标生成.geojson文件,再将.geojson转换成.csv文件,最后将csv文件插入数据库表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一步:.shp批量转.geojson

# author: JMY
# 创建时间: 2024/2/26 17:12
# 批量将.shp文件生成geojson文件并转换坐标为3857import os
import geopandas as gpd# 定义输入和输出文件夹路径
input_folder = 'shp文件'
output_folder = 'geojson文件'# 定义输入和输出坐标系
out_proj = 'EPSG:3857'# 获取输入文件夹下所有的 Shapefile 文件
shapefiles = [f for f in os.listdir(input_folder) if f.endswith('.shp')]# 循环处理每个 Shapefile 文件
for index, shapefile in enumerate(shapefiles):print('转换第%d条数据...' % (index+1))# 读取 Shapefile 文件gdf = gpd.read_file(os.path.join(input_folder, shapefile))# 对几何数据进行坐标系转换gdf.to_crs(out_proj, inplace=True)# 构造输出文件名,将 '.shp' 替换为 '.geojson'output_file = os.path.splitext(shapefile)[0] + '.geojson'# 保存为 GeoJSON 文件gdf.to_file(os.path.join(output_folder, output_file), driver='GeoJSON')print('Shapefile 转换为包含 EPSG:3857 坐标系的 GeoJSON 完成!')

第二步:.geojson批量转.csv

# author: JMY
# 创建时间: 2024/2/23 15:16
# 批量将geojson文件生成csv文件import os
import geopandas as gpd
import json# 定义一个函数,用于从几何信息中提取坐标
def extract_coordinates(geom):if geom:return json.dumps(geom.__geo_interface__['coordinates'])else:return None# 输入目录和输出目录路径
input_dir = 'geojson文件'  # GeoJSON 文件所在目录路径
output_dir = 'csv文件'  # CSV 文件保存目录路径# 获取输入目录下的所有 GeoJSON 文件名
file_names = [f for f in os.listdir(input_dir) if f.endswith('.geojson')]# 初始化ID计数器
id_counter = 0for index,file_name in enumerate(file_names):print('插入第%d条数据...' % (index+1))input_file = os.path.join(input_dir, file_name)# 读取 GeoJSON 数据并创建 GeoDataFrame 对象data = gpd.read_file(input_file)# 在DataFrame中插入一个自增的'id'列作为第一列,并累加ID计数器data.insert(0, 'id', range(1 + id_counter, len(data) + id_counter + 1))data.insert(1, 'cun_id', -1)# 提取 'coordinates' 和 'type' 信息data['type'] = data['geometry'].apply(lambda geom: geom.geom_type if geom else None)data['coordinates'] = data['geometry'].apply(extract_coordinates)# 删除原始的 'geometry' 列data = data.drop('geometry', axis=1)# 更新ID计数器id_counter += len(data)# 将所有字段中的空值设置为 nulldata = data.fillna(value='null')# 指定输出文件名(与原始文件同名,只改变后缀名)output_file = os.path.splitext(os.path.basename(input_file))[0] + '.csv'output_full_path = os.path.join(output_dir, output_file)# 导出为 CSV 文件data.to_csv(output_full_path, index=False)print("输出完成......")

第三步:.csv批量插入数据库表

# author: JMY
# 创建时间: 2024/2/23 16:35
# 多个csv文件导入数据库同一张表中import os
import glob
import pandas as pd
import mysql.connector# 建立与MySQL数据库的连接
conn = mysql.connector.connect(host='', # 主机ipuser='', # 账号password='', # 密码database='' # 数据库
)# CSV目录路径
csv_directory = 'csv文件'# 获取目录中的所有CSV文件
csv_files = glob.glob(os.path.join(csv_directory, '*.csv'))# 创建游标对象
cursor = conn.cursor()# 循环处理每个CSV文件
for index,csv_file in enumerate(csv_files):print('插入第%d条数据...'%(index+1))# 读取CSV文件data = pd.read_csv(csv_file, encoding='utf-8')  # 根据实际情况指定编码# 将除了'id'和'cun_id'外的其他字段转换为字符串类型for column in data.columns:if column not in ['id','cun_id']:data[column] = data[column].astype(str)# 构建SQL插入语句table_name = 'village_yjjbnt'  # 表名columns = ', '.join(data.columns)values = ', '.join(['%s'] * len(data.columns))insert_query = f"INSERT INTO {table_name} ({columns}) VALUES ({values})"# 批量插入数据records = data.values.tolist()cursor.executemany(insert_query, records)# 提交事务
conn.commit()# 关闭游标和连接
cursor.close()
conn.close()print("数据导入mysql成功...")

这篇关于利用python批量将.shp文件转换坐标生成.geojson文件,再将.geojson转换成.csv文件,最后将csv文件插入数据库表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/762393

相关文章

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

C语言中的常见进制转换详解(从二进制到十六进制)

《C语言中的常见进制转换详解(从二进制到十六进制)》进制转换是计算机编程中的一个常见任务,特别是在处理低级别的数据操作时,C语言作为一门底层编程语言,在进制转换方面提供了灵活的操作方式,今天,我们将深... 目录1、进制基础2、C语言中的进制转换2.1 从十进制转换为其他进制十进制转二进制十进制转八进制十进

Oracle 通过 ROWID 批量更新表的方法

《Oracle通过ROWID批量更新表的方法》在Oracle数据库中,使用ROWID进行批量更新是一种高效的更新方法,因为它直接定位到物理行位置,避免了通过索引查找的开销,下面给大家介绍Orac... 目录oracle 通过 ROWID 批量更新表ROWID 基本概念性能优化建议性能UoTrFPH优化建议注

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

Python将字库文件打包成可执行文件的常见方法

《Python将字库文件打包成可执行文件的常见方法》在Python打包时,如果你想将字库文件一起打包成一个可执行文件,有几种常见的方法,具体取决于你使用的打包工具,下面就跟随小编一起了解下具体的实现方... 目录使用 PyInstaller基本方法 - 使用 --add-data 参数使用 spec 文件(

Python MCPInspector调试思路详解

《PythonMCPInspector调试思路详解》:本文主要介绍PythonMCPInspector调试思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录python-MCPInspector调试1-核心知识点2-思路整理1-核心思路2-核心代码3-参考网址