Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明

2024-02-29 20:04

本文主要是介绍Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python进阶学习:Numpy–ndim、shape、dtype、astype的用法说明

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 🎯 一、引言
  • 📚 二、Numpy简介
  • 🛠️ 三、ndim的用法
  • 📊 四、shape的用法
  • 🔬 五、dtype的用法
  • 🎨 六、astype的用法
  • 🚀 七、总结
  • 🤝 八、期待与你共同进步

🎯 一、引言

  在Python的数据科学领域,Numpy是一个不可或缺的库。它为数组对象提供了大量的功能,并允许进行高效的科学计算。Numpy数组具有许多属性,其中ndimshapedtypeastype是几个非常核心且常用的。本文将详细解读这些属性的用法,并通过代码示例帮助你理解它们的实际作用。

📚 二、Numpy简介

  Numpy(Numerical Python的简称)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy是Python数据处理的基础包,它包含强大的N维数组对象、复杂函数。

🛠️ 三、ndim的用法


  ndim属性用于获取数组的维数。简单地说,它告诉你数组有多少个维度

import numpy as np# 创建一个一维数组
arr_1d = np.array([1, 2, 3, 4])
print(f"一维数组的ndim: {arr_1d.ndim}")  # 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
print(f"二维数组的ndim: {arr_2d.ndim}")  # 创建一个三维数组
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(f"三维数组的ndim: {arr_3d.ndim}") 

输出:

一维数组的ndim: 1
二维数组的ndim: 2
三维数组的ndim: 3进程已结束,退出代码0

📊 四、shape的用法


  shape属性返回一个表示数组在每个维度上大小的元组。对于一维数组,它返回一个表示数组长度的元组;对于二维数组,它返回表示行数和列数的元组;对于更高维度的数组,它会继续返回更多维度的大小。

import numpy as np# 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])# 创建一个三维数组
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])print(f"二维数组的形状: {arr_2d.shape}")  # 输出: (2, 3)print(f"三维数组的形状: {arr_3d.shape}")  # 输出: (2, 2, 2)

shape属性不仅可以用来查询数组的形状,还可以用来协助reshape方法重塑数组。

import numpy as np# 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])# 将二维数组重塑为一维数组
reshaped_arr_1d = arr_2d.reshape(arr_2d.shape[0] * arr_2d.shape[1])
print(reshaped_arr_1d)  # 输出: [1 2 3 4 5 6]

🔬 五、dtype的用法


  dtype属性用于获取数组元素的数据类型。当你创建一个Numpy数组时,可以明确指定数据类型,或者Numpy会根据输入数据自动推断数据类型。

# 创建一个整数数组
import numpy as npint_arr = np.array([1, 2, 3, 4], dtype=np.int32)
print(f"整数数组的数据类型: {int_arr.dtype}")  # 创建一个浮点数数组
float_arr = np.array([1.1, 2.2, 3.3, 4.4])
print(f"浮点数数组的数据类型: {float_arr.dtype}")  

输出:

整数数组的数据类型: int32
浮点数数组的数据类型: float64进程已结束,退出代码0

🎨 六、astype的用法


astype方法用于将数组的数据类型转换为新的数据类型。它是dtype属性的一个非常实用的配套工具。

import numpy as npint_arr = np.array([1, 2, 3, 4], dtype=np.int32)# 将整数数组转换为浮点数数组
float_arr_from_int = int_arr.astype(np.float32)
print(float_arr_from_int)  # 输出: [1. 2. 3. 4.]
print(float_arr_from_int.dtype)  # 输出: float32# 将字符串数组转换为整数数组
# 注意:这要求字符串表示的是有效的整数,否则会抛出ValueError
str_arr = np.array(['1', '2', '3', '4'], dtype=np.str_)
print(str_arr)  # 输出: ['1' '2' '3' '4']
int_arr_from_str = str_arr.astype(np.int32)
print(int_arr_from_str)  # 输出: [1 2 3 4]

astype不仅可以用于简单的类型转换,还可以用于更复杂的数组操作,比如将数组转换为复数类型。

# 创建复数数组
import numpy as npcomplex_arr = np.array([1+2j, 3+4j, 5+6j])
print(complex_arr)  # 输出: [1.+2.j 3.+4.j 5.+6.j]# 创建一个实数数组并转换为复数数组
real_arr = np.array([1, 2, 3])
complex_arr_from_real = real_arr.astype(np.complex128)
print(complex_arr_from_real)  # 输出: [1.+0.j 2.+0.j 3.+0.j]

🚀 七、总结

  通过本文,我们学习了Numpy中ndimshapedtypeastype四个核心属性的用法。这些属性提供了操作Numpy数组形状和类型的重要工具。在实际的数据分析和科学计算中,熟练掌握这些属性将大大提高你的数据处理效率。

🤝 八、期待与你共同进步

  🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏

  🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟

  📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬

  💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉

  🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉

这篇关于Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759910

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数