Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明

2024-02-29 20:04

本文主要是介绍Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python进阶学习:Numpy–ndim、shape、dtype、astype的用法说明

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 🎯 一、引言
  • 📚 二、Numpy简介
  • 🛠️ 三、ndim的用法
  • 📊 四、shape的用法
  • 🔬 五、dtype的用法
  • 🎨 六、astype的用法
  • 🚀 七、总结
  • 🤝 八、期待与你共同进步

🎯 一、引言

  在Python的数据科学领域,Numpy是一个不可或缺的库。它为数组对象提供了大量的功能,并允许进行高效的科学计算。Numpy数组具有许多属性,其中ndimshapedtypeastype是几个非常核心且常用的。本文将详细解读这些属性的用法,并通过代码示例帮助你理解它们的实际作用。

📚 二、Numpy简介

  Numpy(Numerical Python的简称)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy是Python数据处理的基础包,它包含强大的N维数组对象、复杂函数。

🛠️ 三、ndim的用法


  ndim属性用于获取数组的维数。简单地说,它告诉你数组有多少个维度

import numpy as np# 创建一个一维数组
arr_1d = np.array([1, 2, 3, 4])
print(f"一维数组的ndim: {arr_1d.ndim}")  # 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])
print(f"二维数组的ndim: {arr_2d.ndim}")  # 创建一个三维数组
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(f"三维数组的ndim: {arr_3d.ndim}") 

输出:

一维数组的ndim: 1
二维数组的ndim: 2
三维数组的ndim: 3进程已结束,退出代码0

📊 四、shape的用法


  shape属性返回一个表示数组在每个维度上大小的元组。对于一维数组,它返回一个表示数组长度的元组;对于二维数组,它返回表示行数和列数的元组;对于更高维度的数组,它会继续返回更多维度的大小。

import numpy as np# 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])# 创建一个三维数组
arr_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])print(f"二维数组的形状: {arr_2d.shape}")  # 输出: (2, 3)print(f"三维数组的形状: {arr_3d.shape}")  # 输出: (2, 2, 2)

shape属性不仅可以用来查询数组的形状,还可以用来协助reshape方法重塑数组。

import numpy as np# 创建一个二维数组
arr_2d = np.array([[1, 2, 3], [4, 5, 6]])# 将二维数组重塑为一维数组
reshaped_arr_1d = arr_2d.reshape(arr_2d.shape[0] * arr_2d.shape[1])
print(reshaped_arr_1d)  # 输出: [1 2 3 4 5 6]

🔬 五、dtype的用法


  dtype属性用于获取数组元素的数据类型。当你创建一个Numpy数组时,可以明确指定数据类型,或者Numpy会根据输入数据自动推断数据类型。

# 创建一个整数数组
import numpy as npint_arr = np.array([1, 2, 3, 4], dtype=np.int32)
print(f"整数数组的数据类型: {int_arr.dtype}")  # 创建一个浮点数数组
float_arr = np.array([1.1, 2.2, 3.3, 4.4])
print(f"浮点数数组的数据类型: {float_arr.dtype}")  

输出:

整数数组的数据类型: int32
浮点数数组的数据类型: float64进程已结束,退出代码0

🎨 六、astype的用法


astype方法用于将数组的数据类型转换为新的数据类型。它是dtype属性的一个非常实用的配套工具。

import numpy as npint_arr = np.array([1, 2, 3, 4], dtype=np.int32)# 将整数数组转换为浮点数数组
float_arr_from_int = int_arr.astype(np.float32)
print(float_arr_from_int)  # 输出: [1. 2. 3. 4.]
print(float_arr_from_int.dtype)  # 输出: float32# 将字符串数组转换为整数数组
# 注意:这要求字符串表示的是有效的整数,否则会抛出ValueError
str_arr = np.array(['1', '2', '3', '4'], dtype=np.str_)
print(str_arr)  # 输出: ['1' '2' '3' '4']
int_arr_from_str = str_arr.astype(np.int32)
print(int_arr_from_str)  # 输出: [1 2 3 4]

astype不仅可以用于简单的类型转换,还可以用于更复杂的数组操作,比如将数组转换为复数类型。

# 创建复数数组
import numpy as npcomplex_arr = np.array([1+2j, 3+4j, 5+6j])
print(complex_arr)  # 输出: [1.+2.j 3.+4.j 5.+6.j]# 创建一个实数数组并转换为复数数组
real_arr = np.array([1, 2, 3])
complex_arr_from_real = real_arr.astype(np.complex128)
print(complex_arr_from_real)  # 输出: [1.+0.j 2.+0.j 3.+0.j]

🚀 七、总结

  通过本文,我们学习了Numpy中ndimshapedtypeastype四个核心属性的用法。这些属性提供了操作Numpy数组形状和类型的重要工具。在实际的数据分析和科学计算中,熟练掌握这些属性将大大提高你的数据处理效率。

🤝 八、期待与你共同进步

  🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏

  🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟

  📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬

  💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉

  🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉

这篇关于Python进阶学习:Numpy--ndim、shape、dtype、astype的用法说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/759910

相关文章

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

Python中CSV文件处理全攻略

《Python中CSV文件处理全攻略》在数据处理和存储领域,CSV格式凭借其简单高效的特性,成为了电子表格和数据库中常用的文件格式,Python的csv模块为操作CSV文件提供了强大的支持,本文将深入... 目录一、CSV 格式简介二、csv模块核心内容(一)模块函数(二)模块类(三)模块常量(四)模块异常

Python报错ModuleNotFoundError的10种解决方案

《Python报错ModuleNotFoundError的10种解决方案》在Python开发中,ModuleNotFoundError是最常见的运行时错误之一,通常由模块路径配置错误、依赖缺失或命名冲... 目录一、常见错误场景与原因分析二、10种解决方案与代码示例1. 检查并安装缺失模块2. 动态添加模块