Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)

本文主要是介绍Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在PyTorch框架内,执行CIFAR-100识别任务使用Vision Transformer(ViT)模型可以分为以下步骤:

  1. 导入必要的库。
  2. 加载和预处理CIFAR-100数据集。
  3. 定义ViT模型架构。
  4. 设置训练过程(包括损失函数、优化器等)。
  5. 训练模型。
  6. 测试模型性能。

示例代码

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.models import vit_b_16, ViT_B_16_Weights# 1. 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 2. 加载并预处理CIFAR-100数据集
transform = transforms.Compose([transforms.Resize((224, 224)),  # ViT期望的输入尺寸transforms.ToTensor(),transforms.Normalize(0.5, 0.5)
])trainset = torchvision.datasets.CIFAR100(root='./data', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,shuffle=True)testset = torchvision.datasets.CIFAR100(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,shuffle=False)# 3. 定义ViT模型
weights = ViT_B_16_Weights.DEFAULT
model = vit_b_16(weights=weights)
model.heads[0] = nn.Linear(model.heads[0].in_features, 100)  # 修改分类头为100类# 如果有可用的GPU,则将模型转到GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)# 4. 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 5. 训练模型
for epoch in range(10):  # 遍历数据集多次running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 200 == 199:  # 每200个批次打印一次print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.3f}')running_loss = 0.0print('Finished Training')# 6. 评估模型
correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataimages, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

在这个代码示例中,我们使用了ViT_B_16_Weights来自动获取适合ImageNet预训练的权重。然后我们修改了分类头,以适应CIFAR-100数据集的100个类别。请确保安装了最新版本的torchvision,因为早期版本可能不包含Vision Transformer模型。

ViT-B-16模型介绍

在这里插入图片描述

ViT-B-16是Vision Transformer(ViT)模型的一个变体,由Google在2020年提出。ViT模型是一种应用于图像识别任务的Transformer架构,它采用了在自然语言处理(NLP)中非常成功的Transformer模型,并将其调整以处理图像数据。
以下是ViT-B-16模型的一些关键特点:

Transformer 架构

ViT将图像分割为固定大小的patches(例如,16x16像素的小块),将它们线性嵌入为一维向量,并在这些向量前加上位置编码,然后将它们输入到Transformer结构中。
Transformer结构利用自注意力机制,它允许模型关注图像的不同部分以提取特征,而无需任何卷积层(全局特征)。

ViT-B-16的参数

“B”指的是“Base”模型大小,它指定了模型的宽度和深度,即Transformer的层数(encoder blocks)和每层的隐藏单元数目。
“16”指的是将图像分割为16x16像素大小的patches。

训练和数据

ViT模型通常需要大量的数据来进行训练,因为Transformer架构本身不具备卷积神经网络(CNN)的归纳偏置(inductive biases),如平移不变性和局部性。因此,ViT依赖于大量数据来学习这些特性。
ViT在大型数据集(如ImageNet或JFT-300M)上进行预训练,然后可以在较小的数据集上进行微调,例如CIFAR-100。

性能

当训练数据足够多时,ViT的性能可以与当时的最先进CNN模型相匹敌或超过它们,特别是在大规模图像识别任务中。
总的来说,ViT-B-16模型是在图像处理领域引入Transformer架构的突破性尝试,它展示了Transformer结构在处理除了文本以外的数据类型时的潜力。

在PyTorch中实现ViT-B-16模型的代码可能会涉及到使用预训练的模型,或者使用像huggingface/transformers这样的库,这些库提供了Transformer模型的预训练版本和用于微调的工具。

这篇关于Vision Transformer(ViT-Base-16)处理CIFAR-100模式识别任务(基于Pytorch框架)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759842

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service