【深度优先搜索】【图论】【推荐】332. 重新安排行程

2024-02-29 16:36

本文主要是介绍【深度优先搜索】【图论】【推荐】332. 重新安排行程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

深度优先搜索 图论

LeetCode332. 重新安排行程

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:
在这里插入图片描述

输入:tickets = [[“MUC”,“LHR”],[“JFK”,“MUC”],[“SFO”,“SJC”],[“LHR”,“SFO”]]
输出:[“JFK”,“MUC”,“LHR”,“SFO”,“SJC”]
示例 2:
在这里插入图片描述

输入:tickets = [[“JFK”,“SFO”],[“JFK”,“ATL”],[“SFO”,“ATL”],[“ATL”,“JFK”],[“ATL”,“SFO”]]
输出:[“JFK”,“ATL”,“JFK”,“SFO”,“ATL”,“SFO”]
解释:另一种有效的行程是 [“JFK”,“SFO”,“ATL”,“JFK”,“ATL”,“SFO”] ,但是它字典排序更大更靠后。

提示:
1 <= tickets.length <= 300
tickets[i].length == 2
fromi.length == 3
toi.length == 3
fromi 和 toi 由大写英文字母组成
fromi != toi

基础知识

定义

如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径(Euler path)。
如果一个回路是欧拉路径,则称为欧拉回路(Euler circuit)。

性质

性质一:一个有向图是欧拉回路 ⟺ \iff 所有顶点的入度等于出度且该图是连通图。
性质二:一个有向图是欧拉路径 ⟺ \iff 起点出度等于入度+1,终点入度=出度+1,其它顶点的入度等于出度且该图是连通图。
欧拉路径和回路符合性质比较简单,不证明。下面只证明性质一必定是欧拉回路,性质二是欧拉路径。

证明一

设有向图G符合性质一。
操作一:以任意定点为起点s,选取s的任意临接点n1,删除sn1后,除s外,其它顶点都是出度等于入度,就是进入后,一定会离开。由于顶点的出度和入度是有限的,所以一定会结束,而结束点一定是s(因为只有它入度大于出度)。设删除经过的路径为P1。
最后一次经过s后,可能有些点入度并不为0。
→ { ∗ ∗ 操作二 ∗ ∗ 图 G 删除 P 1 各边,此时余下的边 P 2 仍然符合性质一。 P 1 经过的各点,一定有点 n 2 出度不为 0 。否则与连通图矛盾。 \rightarrow\begin{cases}**操作二**图G删除P1各边,此时余下的边P2仍然符合性质一。\\ P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。\\ \end{cases} {操作二G删除P1各边,此时余下的边P2仍然符合性质一。P1经过的各点,一定有点n2出度不为0。否则与连通图矛盾。
操作二时:如果有重边,经过几次则删除几条。
以n2为起点对P2进行操作一,得到P3,必定以n2开始和结尾。
用P3替换P1的n2节点。如此往复直到所有节点出度入度为0。

证明二

设有向图G符合性质二,s出度=入度+1,e入度=出度+1。一定存在以s为起点,e为终点的路径P1。选取方法类似证明一,多个出边任选一条出边。图G删除P1后,为P2;P2要么为空,要么符合性质二。

深度优先搜索

题目确保某条从JFK为起点的路径是欧拉路径。
如果是欧拉环路:所有点出度等于入度。
如果不是环路:起点出度-1==入度 终点入度=出度+1,其它节点入度等于出度。
必须确保起点最后访问终点那一支,其它访问顺序按字典需。

DFS 函数

在这里插入图片描述

主函数

DFS(“JFK”)
颠倒m_vRes的顺序
返回m_vRet。

示例和时序图

在这里插入图片描述
在这里插入图片描述

按时间线访问m_vRes的顺序:DAFEACBA。转置(颠倒顺序)后为:ABCAEFAD。

证明:

假定图G的欧拉路径最后一个出度大于1的节点为c,它共有m+1+n条出边,按邻接字典序排序后,第m+1条出边指向终点e。
步骤一:只讨论节点c及之后的路径。设c的临接点按字典序分别为:n[1] …n[m+n+1]。
除DFS(n[1+m] → \rightarrow e)可以直接结束,其它节点都必须等所有A的出边都访问结束(包括n[1+m]),所以 n[1+m] → \rightarrow e 的逆序最先加到vRet。
c → \rightarrow n[n+m+1]是c最后一条出边,故将 n[i+m+1] → \rightarrow c 的逆序放到vRet 中。
c → \rightarrow n[n+m ]是c最倒数第二条出边,故将 n[i+m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots 将 n[1+m+1] → \rightarrow c 的逆序放到vRet 中。
⋮ \vdots
⋯ \cdots 将 n[m] → \rightarrow c 的逆序放到vRet 中。
⋯ \cdots n[1 ] → \rightarrow c 的逆序放到vRet 中。
将c 放到vRet 中。
步骤二:将图G 节点c及之后节点的出边都删除。c变成新的终点。
不断持续步骤一二到所有节点的出度为1。注意:c等于e也符合。

代码

核心代码

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {std::unordered_map<string, multiset<string>> mNeiBo;for (const auto& v : tickets){mNeiBo[v[0]].emplace(v[1]);}DFS(mNeiBo, "JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void DFS(std::unordered_map<string, multiset<string>>& mNeiBo,const string& cur){while (mNeiBo[cur].size()){auto next = *mNeiBo[cur].begin();mNeiBo[cur].erase(mNeiBo[cur].begin());DFS(mNeiBo, next);}m_vRet.emplace_back(cur);}vector<string> m_vRet;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<string>> tickets;{Solution sln;tickets = { {"MUC","LHR"},{"JFK","MUC"},{"SFO","SJC"},{"LHR","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","MUC","LHR","SFO","SJC" }, res);}{Solution sln;tickets = { {"JFK","SFO"},{"JFK","ATL"},{"SFO","ATL"},{"ATL","JFK"},{"ATL","SFO"} };auto res = sln.findItinerary(tickets);Assert({ "JFK","ATL","JFK","SFO","ATL","SFO" }, res);}
}

2023年4月

class Solution {
public:vector<string> findItinerary(vector<vector<string>>& tickets) {		for (const auto& v : tickets){m_vNeiB[v[0]].emplace(v[1]);}dfs("JFK");std::reverse(m_vRet.begin(), m_vRet.end());return m_vRet;}void dfs(const string& sCur){while (m_vNeiB.count(sCur) && m_vNeiB[sCur].size()){const string sNext = m_vNeiB[sCur].top();m_vNeiB[sCur].pop();dfs(sNext);}m_vRet.emplace_back(sCur);}std::unordered_map < string, std::priority_queue<string, vector<string>, greater<string>>> m_vNeiB;vector<string> m_vRet;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【图论】【推荐】332. 重新安排行程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/759389

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数