嵌入式学习第二十二天!(继续学习线程)

2024-02-29 03:52

本文主要是介绍嵌入式学习第二十二天!(继续学习线程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线程相关函数接口:

1. 线程分离属性:

    线程结束后,自动回收线程空间

    1. pthread_attr_init:

int pthread_attr_init(pthread_attr_t *attr);

        功能:线程属性初始化

    2. pthread_attr_destroy:

int pthread_attr_destroy(pthread_attr_t *attr);

        功能:线程属性销毁

    3. pthread_attr_setdetachstate:

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

        功能:设置分离属性

            PTHREAD_CREATE_DETACHED   分离属性
            PTHREAD_CREATE_JOINABLE   加入属性(默认)

    练习:

       1. 利用线程的分离属性创建三个线程,打印线程id

#include "head.h"void *thread1(void *arg)
{printf("stat to thread1(tid:%#x)\n", (unsigned int)pthread_self());return NULL;
}void *thread2(void *arg)
{printf("stat to thread2(tid:%#x)\n", (unsigned int)pthread_self());return NULL;
}void *thread3(void *arg)
{printf("stat to thread2(tid:%#x)\n", (unsigned int)pthread_self());return NULL;
}int main(void)
{int i = 0;pthread_t thread[3];void *(*p[3])(void *) = {thread1, thread2, thread3};pthread_attr_t attr;pthread_attr_init(&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);for(i = 0; i < 3; i++){pthread_create(&thread[i], &attr, p[i], NULL);}pthread_attr_destroy(&attr);while(1){}}

        2. 首先定义一个学生结构体,包含姓名、性别、年龄、分数。再创建两个两个线程,线程1负责从终端接收学生信息,线程2负责将学生信息打印在终端。

#include "head.h"struct studet
{char name[100];char sex;int age;int score;
};void *InputInfo(void *arg)
{struct studet *stu = arg;char *ptmp = stu->name;fgets(stu->name, 100, stdin);ptmp[strlen(ptmp)-1] = '\0';scanf("%c", &stu->sex);scanf("%d", &stu->age);scanf("%d", &stu->score);return NULL;
}void *OutputInfo(void *arg)
{struct studet *stu = arg;sleep(5);printf("%s\n", stu->name);printf("%c\n", stu->sex);printf("%d\n", stu->age);printf("%d\n", stu->score);return NULL;
}int main(void)
{struct studet t;pthread_t input;pthread_t output;pthread_create(&input, NULL, InputInfo, &t);pthread_create(&output, NULL, OutputInfo, &t);pthread_join(input, NULL);pthread_join(output, NULL);return 0;
}

2. 线程互斥:

    1. 互斥锁:

        防止资源竞争

    2. 函数接口:

        1. pthread_mutex_init:
int pthread_mutex_init(pthread_mutex_t *restrict mutex,const pthread_mutexattr_t *restrict attr);

            功能:互斥锁初始化

            参数:

                mutex:互斥锁空间首地址
                attr:互斥锁的属性(默认为NULL)

            返回值:

                成功返回0 
                失败返回错误码

        2. pthread_mutex_destroy:
int pthread_mutex_destroy(pthread_mutex_t *mutex);

            功能:互斥锁销毁

            参数:

                mutex:互斥锁空间首地址

            返回值:

                成功返回0 
                失败返回错误码

        3. pthread_mutex_lock:
int pthread_mutex_lock(pthread_mutex_t *mutex);

            功能:上锁

        4. pthread_mutex_unlock:
int pthread_mutex_unlock(pthread_mutex_t *mutex);

            功能:解锁

    3. 临界资源、临界区:

        加锁解锁中间的代码称为临界资源、临界区

        同一时刻临界资源不能同时执行,只能执行其中一个临界资源代码

    4. 原子操作:

        CPU最小的一次不能被任务调度打断的操作称为原子操作

    5. 注意:

        互斥锁只能解决资源竞争的问题,无法同步代码(没有先后执行的顺序关系)

    练习:

        定义三个整型的全局变量Num1, Num2,val,创建两个线程,一个线程循环令Num1=val,Num2=val,val自加;另一个线程,循环判断:当Num1不等于Num2的时候,输出Num1和Num2的值。利用互斥锁,让Num1始终等于Num2,使终端没有输出。

#include "head.h"int val = 0;
int Num1 = 0;
int Num2 = 0;
pthread_mutex_t lock;void *thread1(void *arg)
{while(1){pthread_mutex_lock(&lock);Num1 = val;Num2 = val;pthread_mutex_unlock(&lock);val++;}return NULL;
}
void *thread2(void *arg)
{while(1){pthread_mutex_lock(&lock);if(Num1 != Num2){printf("Num1 = %d, Num2 = %d\n", Num1, Num2);}pthread_mutex_unlock(&lock);}return NULL;
}int main(void)
{pthread_t tid1;pthread_t tid2;pthread_mutex_init(&lock, NULL);pthread_create(&tid1, NULL, thread1, NULL);pthread_create(&tid2, NULL, thread2, NULL);pthread_join(tid1, NULL);pthread_join(tid2, NULL);pthread_mutex_destroy(&lock);return 0;
}

3. 死锁:

    多线程操作互斥锁,导致多个线程均违法向下执行的状态称为死锁状态,简称为死锁

    1. 死锁产生的四个必要条件:

        1. 互斥条件

        2. 不可剥夺条件

        3. 请求保持

        4. 循环等待

    2. 如何避免产生死锁:

        1. pthread_mutex_trylock 替代 pthread_mutex_lock

        2. 加锁顺序保持一致

4. 信号量:

    信号量是一种资源,可以被初始化、申请、释放、销毁

    P操作:申请资源

    V操作:释放资源

    1. sem_init:

int sem_init(sem_t *sem, int pshared, unsigned int value);

        功能:初始化信号量

        参数:

            sem:信号量空间首地址

            pshared:为0的话,是一个进程中的所有线程间共享;非0的话,则是进程间共享

            value:初始化的值

        返回值:

           成功返回0 
           失败返回-1 

    2. sem_destory:

int sem_destroy(sem_t *sem);

        功能:信号量的销毁

        参数:

            sem:信号量空间首地址

        返回值:

            成功返回0 
            失败返回-1

    3. sem_wait:

int sem_wait(sem_t *sem);

        功能:申请信号量

    4. sem_post:

int sem_post(sem_t *sem);

        功能:释放信号量

作业:

        1. 创建三个线程分别循环打印 A B C,要求打印出来的顺序总是 A -> B -> C

#include "head.h"sem_t sem_a;
sem_t sem_b;
sem_t sem_c;void *thread1(void* arg)
{while(1){sem_wait(&sem_a);printf("A\n");sem_post(&sem_b);}return NULL;
}
void *thread2(void* arg)
{while(1){sem_wait(&sem_b);printf("B\n");sem_post(&sem_c);}return NULL;
}
void *thread3(void* arg)
{while(1){sem_wait(&sem_c);printf("C\n");sem_post(&sem_a);}return NULL;
}int main(void)
{int i = 0;pthread_t tid[3];void *(*p[3])(void *) = {thread1, thread2, thread3};sem_init(&sem_a, 0, 1);sem_init(&sem_b, 0, 0);sem_init(&sem_c, 0, 0);for(i = 0; i < 3; i++){pthread_create(&tid[i], NULL, p[i], NULL);}for(i = 0; i < 3; i++){pthread_join(tid[i], NULL);}sem_destroy(&sem_a);sem_destroy(&sem_b);sem_destroy(&sem_c);return 0;}

        2. PTA | 程序设计类实验辅助教学平台

#include <stdio.h>struct student
{char number[20];int testbit;int exambit;
};int GetStudentBit(struct student *pstu, int maxlen)
{int n = 0;int i = 0;scanf("%d", &n);if(n > maxlen){perror("Over to limit");return -1;}for(i = 0; i < n; i++){scanf("%s %d %d", pstu[i].number, &pstu[i].testbit, &pstu[i].exambit);}return n;
}
int GetFoundBit(int *pbit, int maxlen)
{int m = 0;int i = 0;scanf("%d", &m);if(m > maxlen){perror("Over to limit");return -1;}for(i = 0; i < m; i++){scanf("%d", &pbit[i]);}return m;
}int PrintStudentBit(struct student *pstu, int curlen, int *pfound, int m)
{int i = 0;int j = 0;for(i = 0; i < m; i++){for(j = 0; j < curlen; j++){if(pstu[j].testbit == pfound[i]){printf("%s %d\n", pstu[j].number, pstu[j].exambit);}}}return 0;}int main(void)
{struct student stu[1000];int curlen = 0;int bitinfo[1000];int foundnum = 0;curlen = GetStudentBit(stu, 1000);foundnum = GetFoundBit(bitinfo, 1000);PrintStudentBit(stu, curlen, bitinfo, foundnum);return 0;
}

这篇关于嵌入式学习第二十二天!(继续学习线程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757502

相关文章

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

SpringBoot3中使用虚拟线程的完整步骤

《SpringBoot3中使用虚拟线程的完整步骤》在SpringBoot3中使用Java21+的虚拟线程(VirtualThreads)可以显著提升I/O密集型应用的并发能力,这篇文章为大家介绍了详细... 目录1. 环境准备2. 配置虚拟线程方式一:全局启用虚拟线程(Tomcat/Jetty)方式二:异步

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案

《使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案》在SpringBoot应用中,我们经常使用​​@Cacheable​​注解来缓存数据,以提高应用的性能... 目录@Cacheable注解Redis时,Redis宕机或其他原因连不上,继续调用原方法的解决方案1

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

嵌入式Linux之使用设备树驱动GPIO的实现方式

《嵌入式Linux之使用设备树驱动GPIO的实现方式》:本文主要介绍嵌入式Linux之使用设备树驱动GPIO的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、设备树配置1.1 添加 pinctrl 节点1.2 添加 LED 设备节点二、编写驱动程序2.1