Opencv实战(3)详解霍夫变换

2024-02-28 20:44

本文主要是介绍Opencv实战(3)详解霍夫变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

霍夫变换

Opencv实战系列指路前文:
Opencv(1)读取与图像操作
Opencv(2)绘图与图像操作

文章目录

  • 霍夫变换
    • 1.霍夫线变换
      • 1.1 原理
      • 1.2 HoughLines()
    • 2.霍夫圆变换
      • 2.1 原理
      • 2.2 HoughCircles()

最基本的霍夫变换是从黑白图像中检测直线(线段)

霍夫变换(Hough Transform)是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合作为霍夫变换结果。

1.霍夫线变换

1.1 原理

图像空间点——>参数空间线,图像空间点共线——>参数空间线交点, 参数空间点——>图像空间线

1.2 HoughLines()

void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )
  • 第二个参数 存储线条,每线条由 $ (\rho , \theta) $表示
  • 第三个参数 rho 距离精度(步长) $ \rho $
  • 第四个参数 theta 角度精度 $ \theta $

2.霍夫圆变换

2.1 原理

$ (x_0-a)2+(y_0-b)2=R^2 $

  1. 从平面坐标到极坐标转换三个参数 C ( a 0 , b 0 , r ) C(a_0,b_0,r) C(a0,b0,r) a0 ,b0是圆心
  2. 图像空间点—>参数空间圆锥,图像空间点共圆—>圆锥截面圆交点, 三维空间点—>图像空间圆

2.2 HoughCircles()

基本原理

  1. 噪声敏感——>中值滤波
  2. 基于图像梯度,检测边缘发现可能圆心,从可能圆心计算最佳半径

霍夫梯度法

  1. 计算图像中每个像素点的梯度方向和大小。可以使用Sobel算子或其他边缘检测算法来计算梯度。
  2. 对于每个像素点,根据其梯度方向和大小,在参数空间中生成可能的直线或圆的参数。对于直线,参数通常是斜率和截距;对于圆,参数通常是圆心坐标和半径。
  3. 对于每个生成的参数组合,统计通过该参数组合的像素点数量。这可以通过累加器数组来实现,数组的每个元素对应一个参数组合,值表示通过该参数组合的像素点数量。
  4. 根据累加器数组的结果,找到可能存在的直线或圆的参数。可以设置一个阈值来筛选出像素点数量大于阈值的参数组合,即为检测到的直线或圆。
  5. 根据检测到的直线或圆的参数,在原始图像上绘制检测结果。
void HoughCircles(InputArray image,OutputArray circles, int method, double dp, double minDist, double param1=100,double param2=100, int minRadius=0, int maxRadius=0 )
  • method : CV_HOUGH_GRADIENT

  • dp : 如果dp= 1时,累加器和输入图像具有相同的分辨率。如果dp=2,累加器便有输入图像一半那么大的宽度和高度。

  • minDist :为霍夫变换检测到的圆的圆心之间的最小距离

  • param1 :传递给canny边缘检测算子的高阈值

  • param2 :越小,可以检测更多根本不存在的圆;越大,能通过检测的圆更加接近完美的圆形

connectedComponentsWithStats()

int cv::connectedComponentsWithStats(InputArray image,OutputArray labels,OutputArray stats,OutputArray centroids,int connectivity = 8, int ltype = CV_32S );

retval : 返回值是连通区域的数量。
labels : labels是一个与image一样大小的矩形(labels.shape = image.shape),其中每一个连通区域会有一个唯一标识,标识从0开始。
stats :stats会包含5个参数分别为x,y,h,w,s。分别对应每一个连通区域的外接矩形的起始坐标x,y;外接矩形的wide,height;s其实不是外接矩形的面积,实践证明是labels对应的连通区域的像素个数。
centroids : 返回的是连通区域的质心。

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python

在这里插入图片描述

这篇关于Opencv实战(3)详解霍夫变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756565

相关文章

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.