oracle DG 原理

2024-02-28 20:12
文章标签 oracle 原理 dg

本文主要是介绍oracle DG 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Oracle中,什么是DG?DG有哪些优缺点?

DG(Data Guard,数据卫士)不是一个备份恢复的工具,然而,DG却拥有备份的功能,在物理DG下它可以和主库一模一样,但是它存在的目的并不仅仅是为了备份恢复数据,应该说它的存在是为了确保企业数据的高可用性,数据保护以及灾难恢复。DBA可以通过将一些操作(例如查询报表)转移到备库执行的方式来减小主库的压力,构建高可用的企业数据库应用环境。

在DG环境中,至少有两个数据库,一个处于OPEN状态对外提供服务,这个数据库叫作主库(Primary Database)。第二个处于恢复状态,叫作备库(Standby Database)。在通常情况下,主库对外提供服务,用户在主库上进行操作,操作被记录在联机日志和归档日志中,这些日志通过网络传递给备库,然后在备库上被应用,从而实现主库和备库的数据同步。Oracle对这一过程进一步地优化设计,使得日志的传递、恢复工作更加自动化、智能化,并且提供一系列参数和命令简化了DBA工作。如果软硬件升级,那么可以把备库切换为主库继续对外服务,这样既减少了服务停止时间,并且数据不会丢失。如果异常原因导致主库不可用,那么也可以把备库强制切换为主库继续对外服务,这时数据损失都和配置的数据保护级别有关系。所以,Primary和Standby只是一个角色概念,并不固定在某个数据库中。

每个技术都有其优缺点,下面来看看DG有哪些优缺点。

DG的优点主要有以下几点内容:

① 灾难恢复及高可用性。

② 全面的数据保护。

③ 有效利用系统资源。

④ 在高可用及高性能之间更加灵活的平衡机制。

⑤ 故障自动检查及解决方案。

⑥ 集中的、易用的管理模式。

⑦ 自动化的角色转换。

DG的缺点主要有以下几点内容:

① 由于传输整个日志文件,所以,需要较高的网络传输带宽。

② 在Oracle 11g之前的物理备库虽然可以以只读方式打开,然后执行查询、报表等操作,但需要停止应用日志,这将使目标库与源数据不能保持同步,如果在此期间源数据库发生故障,那么将延长切换的时间。从Oracle 11g开始,ADG可以在数据库打开的情况下应用日志,这极大地提高了DG的应用范围。

③ 逻辑备库不能支持某些特定的数据对象和数据类型。

④ 不支持双向复制,所以,无法应用于信息集成的场合。

⑤ 只能复制整个数据库,不能选择某个SCHEMA或表空间或表进行单独复制。

⑥ 不支持异构的系统环境,需要相同的操作系统版本和数据库版本(Oracle 11g支持部分异构平台)。

DG基本原理是:

将日志文件从 原数据库 传输到 目标数据库,然后在目标数据库上应用这些日志文件,从而使目标数据库与源数据库保持同步,是一种数据库级别的高可用方案。

DG整个过程分成3部分:

日志发送(Redo Send)

日志接收(Redo Receive)

日志应用(Redo Apply)

两种日志传送方式:

主库 primary database 在运行过程中,会不断产生redo重做日志,这些日志需要发送到备库 standby database,这个发送动作可以由

主库的两种日志传输方式 来完成:

ARCH进程

LGWR进程

ARCH进程,可以理解为 传归档日志

LGWR进程,可以理解为 传重做日志

主库产生了日志以后,通过 LGWR进程 写入在线重做日志

重做日志满足一定的条件,会切换

如果开了归档,重做日志就会归档,通过ARC0归档进程(编号有累加)将该日志归档

另外一个归档进程 通过网络 将归档日志传输到备库

备库上的【RFS】负责接收日志

接收以后,有两种情况:–【接收以后的动作】参考这里

1.如果备库配置了Standby RedoLogs,会将传输过来的日志复制到这里

然后将备用日志归档到本地的归档目录里去,再应用归档

2.如果备库没有配置Standby RedoLogs,RFS接收到日志后

会直接放到本地的归档目录,然后再应用日志 --奇怪,还是要放到归档目录

应用日志也有两种:

物理的叫MRP进程

逻辑的叫LSP进程

dg就是这两个进程,ARCH和LGWR,搞清楚了就好了

一个是归档进程

一个是重做日志

不同的日志应用方式的详解:

DG ARCH进程 详解:

主库:
产生日志后通过LGWR进程写入在线重做日志,当满足相关条件后在线重做日志会进行切换,ARC0进程归档该日志至主库本地的归档目录,归档完成后,ARC1进程就会将归档日志传输到备库

备库:
RFS进程负责接收日志
1)如果备库有Standby重做日志,则把日志复制到Standby重做日志,接着把Standby重做日志归档至备库本地归档目录,最后应用归档
2)如果没有配置Standby重做日志,RFS进行接收日志后,直接把它放到备库的归档目录下,再应用该日志

使用 ARCH 进程存在的问题:
主库 只有在发生归档时 才会发送日志到备库
如果主库异常宕机,联机日志中的redo内容就会丢失,因此使用ARCH进程 无法避免数据丢失 的问题,要想避免数据丢失,就必须使用LGWR,而使用LGWR又分为 同步和异步 两种方式
12c增加了 fast sync模式

LGWR ASYNC --异步过程详解
主库:
产生日志,只要有新的重做日志产生,LGWR进程就触发LNSn进程把新生成的重做日志传输到备库
ASYNC是 redo buffer 保存到 online redo log 后,LNSn才开始传输

备库:
RFS进程负责接收日志,接收日志后将其写入Standby重做日志,如果备库开启了实时应用,就立即做日志应用,如果没有开启,则等Standby重做日志 归档后 再应用

LGWR-SYNC --同步过程详解
主库:产生日志,只要有新的重做日志产生,LGWR进程就将触发 LNSn进程 把新生成的重做日志传输到备库
SYNC是在 redo buffer 时,LNSn进程就开始传输
备库:RFS进程负责接收日志,接收到日志后将其写入Standby重做日志,如果备库开启了实时应用,就立即做日志应用,如果没有开启,则等Standby重做日志 归档后 再应用

同步的弊端:

同步的方式,传输到备库后,需要等待回复,如果因为网络问题一直等待回复,会卡死,把主库挂死(所以感觉同步还是有很大的风险的),会影响生产,数据是一致的,但是生产挂了。

DG三种数据保护模式:

最大保护:可以保证主库、备库同步,任何情况下主库的损毁都不会导致已提交的数据丢失。如果主库和备库之间的网络出现问题,或者备库本身出现问题,都会导致主库停止数据处理

最大可用:保证主库和备库的同步,与上面的区别是当网络或备库不可用时,主库仍可以继续。该保护模式下,零数据丢失

最大性能:缺省模式,主库、备库是异步的,这种模式可能在主库出现损毁时,丢失一部分数据。但是这种模式对主库的负荷最小,因此具有最好的性能。

主从切换:
switchover:无损的
failover:破坏性的操作

DG 归档裂缝 检测和解决

当主库的某些日志没有成功发送到备库,这时候发生了归档裂缝(archive gap),缺失的这些日志就是裂缝
dg能够自动检测,解决归档裂缝,不需要DBA介入
这需要配置 FAL_CLIENT,FAL_SERVER 这两个参数

FAL_CLIENT 通过网络向 FAL_SERVER 发送请求
FAL_SERVER 通过网络向FAL_CLIENT 发送缺失的日志

除了自动解决,DBA也可以手工解决

12c Far Sync 两地三中心:
12c后,在主备之间放一个远程同步实例,可以放在距离主库较近的异地,专门接收日志
通过 sync 的方式把 redo传输到 far sync 实例,然后通过 async的方式 传输到终端灾备数据库
在此过程中,如果 far sync 实例 出现问题,生产数据库可以直接通过 async 方式把 redo 传输到 灾备数据库

这篇关于oracle DG 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/756497

相关文章

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.