【N皇后问题】【leetcode51】(Java)

2024-02-28 12:58
文章标签 java 问题 皇后 leetcode51

本文主要是介绍【N皇后问题】【leetcode51】(Java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【N皇后问题】【leetcode51】

问题描述

八皇后问题,一个古老而著名的问题,是回溯算法的典型案例。该问题由国际西洋棋棋手马克斯·贝瑟尔于 1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有 76 种方案。1854 年在柏林的象棋杂志上不同的作者发表了 40 种不同的解,后来有人用图论的方法解出 92 种结果。计算机发明后,有多种计算机语言可以编程解决此问题。
在这里插入图片描述

输出结果要求

输入: 4
输出: [[".Q..",  // 解法 1"...Q","Q...","..Q."],["..Q.",  // 解法 2"Q...","...Q",".Q.."]
]

解题思路

针对N皇后问题,若要求解出所有可能的解,这必须列举出N个皇后位置所有的可能组合。一种求解方式就是把N个皇后在棋盘中的所有位置的组合都列举出来,然后依次判断每一个组合会不会出现攻击。这种方法的时间复杂度 O(N^N),显然复杂度是相当高的。
为了能够简化时间复杂度,我们在按照一行一行的当时去放置N个皇后,每行都会放置一个皇后,并且该行放置皇后的位置最大为N;一旦本行的皇后确定了位置后,那么 她所在的行(row),列(col),左斜(hill),右斜(dale) 都不能再放皇后,这样,考虑下一行的皇后的位置时可能的位置就必须避开这些位置。
在这里插入图片描述
对于第一行,有N个位置可以放置皇后;
对于第二行,有N - 3个位置可以放置皇后;
在这里插入图片描述
因此,我们一行一行的放置皇后的位置,如果发现该行没有可以放置皇后的位置时,则回溯到上一行重新放置上一行的皇后的位置。这就是回溯算法。
实现
观察棋盘,一共有 N 个row, N 个col,2N - 1 个hill,2N - 1 个dale。因此,为了能够记录哪一行、列、斜不能放置皇后,引入数组 记录:

	int n;int[] rows; // 所在行是否有queenint[] hills;  // 左斜是否有queenint[] dales;  // 右斜是否有queenint[] queens; // 每列queen 放置的位置

判断 该位置 是否能放置皇后

    private boolean isAttack(int row, int col){int res = rows[col] + hills[row - col + 2 * n] + dales[row + col];return res == 0;}

放置皇后, 在位置(row,col)放置皇后后,需更新 rows, hill, dales数组

    private void placeQueen(int row, int col){queens[row] = col;rows[col] =  1;hills[row - col + 2 * n] = 1;dales[col + row] = 1;}

移走皇后,在位置(row,col)移走皇后后,需更新 rows, hill, dales数组

    private void removeQueen(int row, int col){queens[row] = 0;rows[col] = 0;hills[row - col + 2 * n] = 0;dales[col + row] = 0;}

所有位置都放置好后,生成所需要的字符串列表

    private void addSolution(){List<String> solution = new ArrayList<>();for(int i = 0; i < n; i ++){int col = queens[i];StringBuilder sb = new StringBuilder();for(int j = 0; j < col; j ++)sb.append(".");sb.append("Q");for(int j = col + 1; j < n; j ++)sb.append(".");solution.add(sb.toString());}output.add(solution);}

核心回溯算法

    private void backtrace(int row){for(int col = 0; col < n; col ++){if(isAttack(row, col)){placeQueen(row, col);if(row == n - 1)addSolution();elsebacktrace(row + 1);removeQueen(row, col);}}}

整体代码

class Solution {int[] rows; // 所在行是否有queenint[] hills;  // 左斜是否有queenint[] dales;  // 右斜是否有queenint n;int[] queens; // 每列queen 放置的位置List<List<String>> output;public List<List<String>> solveNQueens(int n){this.n = n;rows = new int[n];hills = new int[4*n - 1];dales = new int[2*n - 1];queens = new int[n];output = new ArrayList<>();backtrace(0);return output;}private boolean isAttack(int row, int col){int res = rows[col] + hills[row - col + 2 * n] + dales[row + col];return res == 0;}private void placeQueen(int row, int col){queens[row] = col;rows[col] =  1;hills[row - col + 2 * n] = 1;dales[col + row] = 1;}private void removeQueen(int row, int col){queens[row] = 0;rows[col] = 0;hills[row - col + 2 * n] = 0;dales[col + row] = 0;}private void addSolution(){List<String> solution = new ArrayList<>();for(int i = 0; i < n; i ++){int col = queens[i];StringBuilder sb = new StringBuilder();for(int j = 0; j < col; j ++)sb.append(".");sb.append("Q");for(int j = col + 1; j < n; j ++)sb.append(".");solution.add(sb.toString());}output.add(solution);}private void backtrace(int row){for(int col = 0; col < n; col ++){if(isAttack(row, col)){placeQueen(row, col);if(row == n - 1)addSolution();elsebacktrace(row + 1);removeQueen(row, col);}}}
}

这篇关于【N皇后问题】【leetcode51】(Java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755571

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏