模块整理!YOLOv9中的“Silence”、“RepNCSPELAN4”、“ADown”、“CBLinear”创新模块汇总!

本文主要是介绍模块整理!YOLOv9中的“Silence”、“RepNCSPELAN4”、“ADown”、“CBLinear”创新模块汇总!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


代码链接:https://github.com/WongKinYiu/yolov9/tree/main

论文链接:YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information


大量文字图片来袭!

本文整理了YOLOv9中的创新模块,附代码和结构图,快收藏使用吧!


1.Silence

       Silence 代码:

class Silence(nn.Module):def __init__(self):super(Silence, self).__init__()def forward(self, x):    return x

        Silence 模块位于yolov9网络的第一层,从Silence的代码中我们可以看到,YOLOv9的Silence 模块的作用就是返回输入的图片变量,并不包含其余操作。这个操作可以将x保存在网络的结构中,极大的方便双主干(在YOLOv9中是辅助分支)的调用及其他工作。


2.RepNCSPELAN4

       RepNCSPELAN4代码:

class RepNCSPELAN4(nn.Module):# csp-elandef __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = c3//2self.cv1 = Conv(c1, c3, 1, 1)self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))self.cv4 = Conv(c3+(2*c4), c2, 1, 1)def forward(self, x):y = list(self.cv1(x).chunk(2, 1))y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

        RepNCSPELAN4模块是YOLOv9中的特征提取-融合模块。


3.ADown

       ADown代码:

class ADown(nn.Module):def __init__(self, c1, c2):  # ch_in, ch_out, shortcut, kernels, groups, expandsuper().__init__()self.c = c2 // 2self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)def forward(self, x):x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)x1,x2 = x.chunk(2, 1)x1 = self.cv1(x1)x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)x2 = self.cv2(x2)return torch.cat((x1, x2), 1)

        ADown模块是YOLOv9中的下采样模块。


4.CBLinear

       CBLinear代码:


class CBLinear(nn.Module):def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):  # ch_in, ch_outs, kernel, stride, padding, groupssuper(CBLinear, self).__init__()self.c2s = c2sself.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)def forward(self, x):outs = self.conv(x).split(self.c2s, dim=1)return outs

        CBLinear模块是YOLOv9中的特征提取模块。

YOLOv9配置文件

# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

这篇关于模块整理!YOLOv9中的“Silence”、“RepNCSPELAN4”、“ADown”、“CBLinear”创新模块汇总!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754886

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

防止SpringBoot程序崩溃的几种方式汇总

《防止SpringBoot程序崩溃的几种方式汇总》本文总结了8种防止SpringBoot程序崩溃的方法,包括全局异常处理、try-catch、断路器、资源限制、监控、优雅停机、健康检查和数据库连接池配... 目录1. 全局异常处理2. 使用 try-catch 捕获异常3. 使用断路器4. 设置最大内存和线

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与