Android OpenGL ES (五)正交投影

2024-02-28 07:58
文章标签 android es opengl 正交投影

本文主要是介绍Android OpenGL ES (五)正交投影,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

之前我们的所有图形效果,都是变形的,比如我们原本绘制的是长宽比是1:1的,结果在手机屏幕上的效果展示却是长方形。那么,本节课我们通过正交投影来解决这个问题。
本节课主要讲解如何去编写相关代码来解决问题,而具体的原理、概念、GL坐标体系变换等暂不做深入说明,会在之后的课程在讲解。

归一化设备坐标

在OpenGL中,我们要渲染的所有物体都要映射到x轴、y轴、z轴上的[-1, 1]范围内,这个范围内的坐标被称为归一化设备坐标,其独立于屏幕的实际尺寸或者形状。归一化设备坐标假定的坐标空间是一个正方形。如下图

 

归一化设备坐标.png

但是我们手机设备一般都不是正方形的,而是长方形的。所以导致x和y两个方向上,同样的比例值,但是视觉上所占的长度却是不一样的。如下图,绘制一个半径占0.5的圆时,效果却是一个椭圆。

归一化设备坐标实际效果.png

解决这个问题,一般我们的解决方案步骤如下:

  1. 在设置物体的坐标、尺寸时,将短边视为标准边,取值范围是[-1,1],而较长边的取值范围则是[-N,N],其中N≥1,N是长边/短边的比例系数。
  2. 顶点着色器设置顶点参数的时候,将长边上的值从[-N,N]换算为[-1,1]的范围内。

步骤如下图:

 

解决步骤1.png

解决步骤2.png

代码实现

针对上面的解决步骤,步骤1只需要我们在设置顶点的时候按照这个标准即可。而步骤2则是本课程的关键。
要对坐标向量进行换算,可以使用矩阵来解决问题。

在三维图形学中,一般使用的是4阶矩阵。OpenGL中使用的是列向量,如[xyzw]T,所以与矩阵相乘时,矩阵在前,向量在后。

知道了原理之后,我们代码实现上需要解决以下几个问题:

  1. 如何获得一个矩阵,可以把坐标范围从[-N,N]换算为[-1,1]的范围内
  2. 如何将矩阵传递到GLSL中
  • 对于问题1,Android提供了Matrix.orthoM这个方法来处理矩阵。
  • 对于问题2,与获取顶点索引类似,可以再GLSL中声明一个mat4类型的矩阵变量,获取其索引,再传递值给她

具体代码实现如下:

private static final String VERTEX_SHADER = "" +// mat4:4×4的矩阵"uniform mat4 u_Matrix;\n" +"attribute vec4 a_Position;\n" +"void main()\n" +"{\n" +// 矩阵与向量相乘得到最终的位置"    gl_Position = u_Matrix * a_Position;\n" +"}";
private int uMatrixLocation;
/*** 矩阵数组*/
private final float[] mProjectionMatrix = new float[]{1, 0, 0, 0,0, 1, 0, 0,0, 0, 1, 0,0, 0, 0, 1,
};@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config) {// 省略部分代码uMatrixLocation = getUniform("u_Matrix");
}@Override
public void onSurfaceChanged(GL10 glUnused, int width, int height) {// 边长比(>=1),非宽高比float aspectRatio = width > height ?(float) width / (float) height :(float) height / (float) width;// 1. 矩阵数组// 2. 结果矩阵起始的偏移量// 3. left:x的最小值// 4. right:x的最大值// 5. bottom:y的最小值// 6. top:y的最大值// 7. near:z的最小值// 8. far:z的最大值if (width > height) {// 横屏Matrix.orthoM(mProjectionMatrix, 0, -aspectRatio, aspectRatio, -1f, 1f, -1f, 1f);} else {// 竖屏or正方形Matrix.orthoM(mProjectionMatrix, 0, -1f, 1f, -aspectRatio, aspectRatio, -1f, 1f);}// 更新u_Matrix的值,即更新矩阵数组GLES20.glUniformMatrix4fv(uMatrixLocation, 1, false, mProjectionMatrix, 0);
}

 

这篇关于Android OpenGL ES (五)正交投影的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754868

相关文章

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

SpringBoot整合(ES)ElasticSearch7.8实践

《SpringBoot整合(ES)ElasticSearch7.8实践》本文详细介绍了SpringBoot整合ElasticSearch7.8的教程,涵盖依赖添加、客户端初始化、索引创建与获取、批量插... 目录SpringBoot整合ElasticSearch7.8添加依赖初始化创建SpringBoot项

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Android DataBinding 与 MVVM使用详解

《AndroidDataBinding与MVVM使用详解》本文介绍AndroidDataBinding库,其通过绑定UI组件与数据源实现自动更新,支持双向绑定和逻辑运算,减少模板代码,结合MV... 目录一、DataBinding 核心概念二、配置与基础使用1. 启用 DataBinding 2. 基础布局

Android ViewBinding使用流程

《AndroidViewBinding使用流程》AndroidViewBinding是Jetpack组件,替代findViewById,提供类型安全、空安全和编译时检查,代码简洁且性能优化,相比Da... 目录一、核心概念二、ViewBinding优点三、使用流程1. 启用 ViewBinding (模块级

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四