2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join

本文主要是介绍2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.需求分析

2.数据展示

3.实现机制

3.1 ReduceJoinMapper:定义Mapper

3.2 ReduceJoinReducer:定义Reducer

3.3 JobMain:定义Main方法

4.运行并查看结果

4.1 准备数据

4.2 运行结果


1.需求分析

假如数据量巨大,两表的数据是以文件的形式存储在 HDFS 中, 需要用 MapReduce 程 序来实现以下 SQL 查询运算

select a.id,a.date,b.name,b.category_id,b.price from t_order a left
join t_product b on a.pid = b.id

2.数据展示

3.实现机制

通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联。

代码结构:

 

3.1 ReduceJoinMapper:定义Mapper

package ucas.mapreduce_reduce_join;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;import java.io.IOException;public class ReduceJoinMapper extends Mapper<LongWritable,Text,Text,Text> {@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {//首先判断数据来自哪个文件FileSplit fileSplit = (FileSplit) context.getInputSplit();String fileName = fileSplit.getPath().getName();if(fileName.equals("orders.txt")){//获取pidString[] split = value.toString().split(",");context.write(new Text(split[2]), value);}else{//获取pidString[] split = value.toString().split(",");context.write(new Text(split[0]), value);}}
}

3.2 ReduceJoinReducer:定义Reducer

package ucas.mapreduce_reduce_join;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class ReduceJoinReducer extends Reducer<Text, Text, Text, Text> {@Overrideprotected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {String first = "";String second = "";for (Text value : values) {if (value.toString().startsWith("p")) {first = value.toString();} else {second = value.toString();}}if (first.equals("")) {context.write(key, new Text("NULL" + "\t" + second));} else {context.write(key, new Text(first + "\t" + second));}}
}

3.3 JobMain:定义Main方法

package ucas.mapreduce_reduce_join;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;public class JobMain extends Configured implements Tool {@Overridepublic int run(String[] strings) throws Exception {//创建一个任务对象Job job = Job.getInstance(super.getConf(), "mapreduce_reduce_join");//打包放在集群运行时,需要做一个配置job.setJarByClass(JobMain.class);//第一步:设置读取文件的类: K1 和V1job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://node01:8020/input/reduce_join"));//第二步:设置Mapper类job.setMapperClass(ReduceJoinMapper.class);//设置Map阶段的输出类型: k2 和V2的类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);//第三,四,五,六步采用默认方式(分区,排序,规约,分组)//第七步 :设置文的Reducer类job.setReducerClass(ReduceJoinReducer.class);//设置Reduce阶段的输出类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(Text.class);//第八步:设置输出类job.setOutputFormatClass(TextOutputFormat.class);//设置输出的路径TextOutputFormat.setOutputPath(job, new Path("hdfs://node01:8020/out/reduce_join_out"));boolean b = job.waitForCompletion(true);return b ? 0 : 1;}public static void main(String[] args) throws Exception {Configuration configuration = new Configuration();//启动一个任务int run = ToolRunner.run(configuration, new JobMain(), args);System.exit(run);}}

4.运行并查看结果

4.1 准备数据

4.2 运行结果

运行命令:hadoop jar day04_mapreduce_combiner-1.0-SNAPSHOT.jar ucas.mapreduce_reduce_join.JobMain

可以看到,我们实现了联合查询操作,还是比较简单的。

这篇关于2.2.11 hadoop体系之离线计算-mapreduce分布式计算-案例:Reduce端实现Join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754520

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J