电商风控系统(flink+groovy+flume+kafka+redis+clickhouse+mysql)

本文主要是介绍电商风控系统(flink+groovy+flume+kafka+redis+clickhouse+mysql),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.项目概览

电商的防止薅羊毛的风控系统

需要使用 groovy 进行风控规则引擎的编写 然后其它技术进行各种数据的 存储及处理

 薅羊毛大致流程

如果单纯使用 if else在业务代码中进行风控规则的编写 那么 维护起来会比较麻烦 并且跟业务系统强绑定不合适  所以一般独立成一个单独的系统

常见风控规则列举

风控引擎设计的核心点

业务逻辑概览

 事件接入中心

技术架构

分层

各单位占比

二.flink常见知识点实战

从下图可以看出 跟之前yarn类似 还是有管理 有大领导 校领导 打工人 打工人来执行任务

分别对应 jobmamager taskmanager taskslot 由 taskslot 执行任务 每个

2.1state

实战

首先看个入门级代码 就是对 字符串的出现次数的结果进行实时统计与打印

package com.juege.hope.opentech.flinktest;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class FlinkTurotial1_17 {public static void main(String[] args) throws Exception {//todo 1.创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//todo 2.读取数据DataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\\juege\\code\\hope-backend\\opentech\\src\\main\\resources\\flinkTextSource.txt");//todo 3.进行数据处理 先 flatmap 再 keyby 再 sum 再打印输出stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {String[] words = s.split(" ");for (String word : words) {collector.collect(new Tuple2<>(word, 1));}}}).keyBy(0).sum(1).print();//todo 4.执行任务env.execute("pantouyu");}}

数据源

 显示结果如下

 使用state来实现sum方法的效果

package com.example.flinktest.test;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class FlinkTurotial1_17 {public static void main(String[] args) throws Exception {//todo 1.创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//todo 2.读取数据DataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\\juege\\code\\flink-test\\src\\main\\resources\\flinkTextSource.txt");//todo 3.进行数据处理 先 flatmap 再 keyby 再 sum 再打印输出stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {String[] words = s.split(" ");for (String word : words) {collector.collect(new Tuple2<>(word, 1));}}}).keyBy(0).flatMap(new SumFunction()).print();
//                .sum(1).print();//todo 4.执行任务env.execute("pantouyu");}}
package com.example.flinktest.test;import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.util.Collector;public class SumFunction extends RichFlatMapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>> {private transient ValueState<Integer> sumState;@Overridepublic void open(Configuration parameters) throws Exception {ValueStateDescriptor<Integer> descriptor = new ValueStateDescriptor<>("sumState", Integer.class);sumState = getRuntimeContext().getState(descriptor);}@Overridepublic void flatMap(Tuple2<String, Integer> value, Collector<Tuple2<String, Integer>> out) throws Exception {String key = value.f0;Integer inputValue = value.f1;Integer currentSum = sumState.value();if (currentSum == null) {currentSum = 0;}currentSum += inputValue;sumState.update(currentSum);out.collect(new Tuple2<>(key, currentSum));}
}

2.2时间,窗口,水印

窗口

全局窗口

根据数据条数触发计算 比如如下就是 每来五条计算一次 并且并行度 等于1

滚动窗口

根据固定时间确定一个个窗口来触发计算 如下为10分钟

滑动窗口

根据固定时间确定一个窗口 然后间隔一定的时间触发窗口的计算

比如如下为 10分钟一个窗口 然后间隔时间为 1分钟那么 第一次计算的窗口

时间为 0-10分钟这个窗口内的数据 第二次 为 1-11分钟这个窗口内的数据 以此类推

时间

水印

水位线是个动态值 水印 = 当前窗口最大事件事件-允许延迟事件

当系统中以提取事件或者处理时间为准时不需要水印, 以事件事件为准时才需要水印 水印在国内又被称作水位线 在我们后面解决数据延迟问题时比较重要 这里先看下 不懂也没关系

2.3 窗口 时间 水印综合运用 解决数据延迟问题案例

如下图 左侧有个窗口 数据从上往下先后来了三条数据 

首先 水印/水位线 = 当前窗口最大事件事件-允许延迟事件

当水位线 >= 窗口时间时 就触发计算

以下说的除了窗口时间外都是事件事件 也就是 数据上携带的时间戳

举个例子 当前 窗口时间为10分钟 但是有一条本应该9分钟到的数据 12分钟才到 那么你可以设置

允许延迟的时间为 2分钟 那么 当12分钟那条数据到的时候,通过公式计算

水位线 = 12-2 = 10>10(窗口时间) 那么这个时候刚好可以触发计算 12分钟到的那条数据也被包含在了这个窗口

2.4CEP

复杂事件找共性处理

 

2.5并行度,任务,子任务

并行度

首先并行就是并发执行 前面我们说到了 一个taskmanager对应一个jvm进程,一个taskmanager中又有多个slot那么 一个slot就对应一个并行度,如果我们现在有两个jobmanager 每个jobmanager下有两个taskmanger 然后 每个taskmanager下面有三个slot 那么 这个flink app支持设置的最大并行度为多少呢 支持的最大并行度 = jobmanager数量* taskmanager数量*slot数量 =slot总数=2*2*3=12 那么 这个时候我如果设置 并行度为 10,那么就会有俩slot空闲 如果设置为12那就刚好

如果设置为14那么启动报错 因为我们计算结果支持的最大并行度为12

任务及子任务

通过以下这句话 判断下一张图片中任务及子任务数

 首先source为第一个任务 他的并行度为2 所以有俩子任务

然后flatmap的并行度是3 按上图所说 并行度相对于前一个任务发生了变化 无法合并 所以

flatmap是第二个任务 他的并行度为3 所以有三个子任务

 

再来到下一个算子 keyby 根据上图所说 就算这里的keyby并行度为3 他也是个独立的任务

然后keyby后面的并行度没变 并且没有新的keyby所以 后面俩算子都可以跟keyby合并成为一个任务

 

2.6checkpoint及savepoint

这篇关于电商风控系统(flink+groovy+flume+kafka+redis+clickhouse+mysql)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754054

相关文章

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署