【postgresql】数据表id自增与python sqlachemy结合实例

2024-02-27 16:52

本文主要是介绍【postgresql】数据表id自增与python sqlachemy结合实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求:
postgresql实现一个建表语句,表名:student,字段id,name,age,
要求:每次添加一个数据id会自动增加1

在PostgreSQL中,您可以使用SERIAL或BIGSERIAL数据类型来自动生成主键ID。以下是一个创建名为student的表的SQL语句,该表包含id、name和age字段,其中id字段会自动递增:
sql

CREATE TABLE student (id SERIAL PRIMARY KEY,name VARCHAR(255) NOT NULL,age INT NOT NULL
);

在这个建表语句中:

  • id字段被设置为SERIAL类型,这意味着每当您向表中插入新行时,id字段的值会自动增加1。
    PRIMARY KEY约束表示id字段是表的主键,它在表中是唯一的,并且不能为NULL。
  • name字段被设置为VARCHAR(255)类型,这是一个可变长度的字符串,最大长度为255个字符。
  • age字段被设置为INT类型,用于存储整数值。

请注意,SERIAL类型是一个整数类型,它会在插入新行时自动增加,但它的值有上限。如果您需要一个更大的数字范围,可以使用BIGSERIAL类型,它与SERIAL类型类似,但可以存储更大的数字。
要向student表中插入数据,您可以使用以下INSERT语句:

INSERT INTO student (name, age) VALUES ('John Doe', 20);
INSERT INTO student (name, age) VALUES ('Tom', 20);

在这个INSERT语句中,您不需要指定id字段,因为它会自动生成。
在这里插入图片描述

ORM操作

# -- coding:utf-8 --
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmakerBase = declarative_base()class User(Base):__tablename__ = 'student'id = Column(Integer, primary_key=True, autoincrement=True)name = Column(String(50), nullable=False)age = Column(Integer, nullable=False)# 创建引擎和会话
engine = create_engine('postgresql://admin:admin@192.168.1.1/post')
Session = sessionmaker(bind=engine)
session = Session()# 创建一个新用户
new_user = User(name='johndoe', age=18)
session.add(new_user)
session.commit()

数据插入成功:
在这里插入图片描述

SERIAL数据类型

如果您的表已经创建,但使用的是INT类型作为主键,并且您想要修改它成为一个自动递增的SERIAL类型,您可以使用ALTER TABLE语句来修改列的数据类型并将其设置为主键。以下是一个例子,展示了如何将现有表users中的id列修改为SERIAL类型:

ALTER TABLE users
MODIFY id SERIAL PRIMARY KEY;

这个命令会改变users表中id列的数据类型为SERIAL,并且将其设置为表的主键。如果id列已经包含数据,这个操作会自动为现有的每个id值分配一个唯一的序列值。
如果您想要保留id列的现有数据并仅为新插入的行生成序列值,您可以使用ALTER TABLE ... ALTER COLUMN ... RESTART命令:

ALTER TABLE users
ALTER COLUMN id RESTART WITH 1;

这个命令会将id序列重新启动,设置下一个插入的行的id值为1。这将不会影响表中已经存在的行。
请注意,这些命令应该在数据库服务器上直接执行,而不是通过应用程序。如果您正在使用SQLAlchemy或其他ORM框架,您可能需要先迁移现有的数据,然后再修改表结构。

案例:
如果之前建表语句中id 用的int类型,怎么修改成SERIAL类型:
如果您的表已经创建,但使用的是INT类型作为主键,并且您想要修改它成为一个自动递增的SERIAL类型,您可以使用ALTER TABLE语句来修改列的数据类型并将其设置为主键。以下是一个例子,展示了如何将现有表users中的id列修改为SERIAL类型:

ALTER TABLE users
MODIFY id SERIAL PRIMARY KEY;

这个命令会改变users表中id列的数据类型为SERIAL,并且将其设置为表的主键。如果id列已经包含数据,这个操作会自动为现有的每个id值分配一个唯一的序列值。
如果您想要保留id列的现有数据并仅为新插入的行生成序列值,您可以使用ALTER TABLE ... ALTER COLUMN ... RESTART命令:

ALTER TABLE users
ALTER COLUMN id RESTART WITH 1;

这个命令会将id序列重新启动,设置下一个插入的行的id值为1。这将不会影响表中已经存在的行。
请注意,这些命令应该在数据库服务器上直接执行,而不是通过应用程序。如果您正在使用SQLAlchemy或其他ORM框架,您可能需要先迁移现有的数据,然后再修改表结构。

SERIAL 与BIGSERIAL的区别

SERIALBIGSERIAL是PostgreSQL中用于自动递增整数键的数据类型,它们之间的主要区别在于可以存储的数值范围:

  1. SERIAL:它是INTEGER类型的一个别名,用于自动递增的整数。SERIAL类型的取值范围与INTEGER类型相同,理论上限是2^31 - 1(2147483647),但实际上由于系统限制,可能会有所不同。
  2. BIGSERIAL:它是BIGINT类型的一个别名,用于自动递增的更大范围的整数。BIGSERIAL类型的取值范围与BIGINT类型相同,理论上限是2^63 - 1(9223372036854775807)。
    在选择SERIALBIGSERIAL时,您应该根据您的应用程序所需的ID范围来决定。如果您预计ID值会非常大,或者有可能达到INTEGER类型的上限,那么应该使用BIGSERIAL。如果您确信ID值会在INTEGER类型的范围内,那么SERIAL将是更高效的选择,因为它在存储和处理上消耗的资源更少。
    例如,如果您正在构建一个可能会有数百万或更多用户的大规模应用程序,并且用户ID需要有很大的范围,那么使用BIGSERIAL会是更合适的选择。如果您构建的是一个小型应用程序,用户数量有限,那么SERIAL可能就足够了。
    在创建表时,您可以这样定义这两个类型:
CREATE TABLE users (id SERIAL PRIMARY KEY,-- ...
);
CREATE TABLE large_users (id BIGSERIAL PRIMARY KEY,-- ...
);

在SQLAlchemy中,您可以这样指定这些类型:

from sqlalchemy import Column, Integer, BigInteger
class SmallUser(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True)# ...
class LargeUser(Base):__tablename__ = 'large_users'id = Column(BigInteger, primary_key=True)# ...

在这个例子中,SmallUser类使用Integer类型,而LargeUser类使用BigInteger类型,后者可以存储更大的数值。在SQLAlchemy中,BigInteger类型对应于PostgreSQL中的BIGINT类型。

这篇关于【postgresql】数据表id自增与python sqlachemy结合实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/753046

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提