吴恩达机器学习之多变量线性回归:多维特征、多变量梯度下降、梯度下降法实践之特征缩放和学习率、特征和多项式回归、正规方程及不可逆性(详细笔记,建议收藏,已有专栏)

本文主要是介绍吴恩达机器学习之多变量线性回归:多维特征、多变量梯度下降、梯度下降法实践之特征缩放和学习率、特征和多项式回归、正规方程及不可逆性(详细笔记,建议收藏,已有专栏),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

吴恩达机器学习栏目清单
专栏直达:https://blog.csdn.net/qq_35456045/category_9762715.html在这里插入图片描述

文章目录

  • 4.多变量线性回归(Linear Regression with Multiple Variables)
    • 4.1 多维特征
    • 4.2 多变量梯度下降
    • 4.3 梯度下降法实践1-特征缩放
    • 4.4 梯度下降法实践2-学习率
    • 4.5 特征和多项式回归
    • 4.6 正规方程
    • 4.7 正规方程及不可逆性(选修)

4.多变量线性回归(Linear Regression with Multiple Variables)

4.1 多维特征

参考视频: 4 - 1 - Multiple Features (8 min).mkv
目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为
在这里插入图片描述
在这里插入图片描述
增添更多特征后,我们引入一系列新的注释:
在这里插入图片描述

4.2 多变量梯度下降

参考视频: 4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:
在这里插入图片描述
其中:
在这里插入图片描述
我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。 多变量线性回归的批量梯度下降算法为:

在这里插入图片描述

求导数后得到:

在这里插入图片描述
我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一个新的值,如此循环直到收敛。
代码示例:
在这里插入图片描述
Python 代码:(多变量线性回归的代价函数)

def computeCost(X

这篇关于吴恩达机器学习之多变量线性回归:多维特征、多变量梯度下降、梯度下降法实践之特征缩放和学习率、特征和多项式回归、正规方程及不可逆性(详细笔记,建议收藏,已有专栏)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751643

相关文章

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Python变量与数据类型全解析(最新整理)

《Python变量与数据类型全解析(最新整理)》文章介绍Python变量作为数据载体,命名需遵循字母数字下划线规则,不可数字开头,大小写敏感,避免关键字,本文给大家介绍Python变量与数据类型全解析... 目录1、变量变量命名规范python数据类型1、基本数据类型数值类型(Number):布尔类型(bo

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基