基于语义解析的KBQA论文

2024-02-27 02:04
文章标签 解析 论文 语义 kbqa

本文主要是介绍基于语义解析的KBQA论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简单KBQA

  1. Template-based question answering over RDF dataUnger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano. WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extensionQingqing Cai, Alexander Yates. ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairsJonathan Berant, Andrew Chou, Roy Frostig, Percy Liang. EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairsSiva Reddy, Mirella Lapata, Mark Steedman. TACL(2014). [PDF]
  5. Semantic parsing for single relation question answeringWen-tau Yih, Xiaodong He, Christopher Meek. ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with FreebaseXuchen Yao, Benjamin Van Durme. ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge baseWen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural networkWenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze. COLING(2016). [PDF]
  9. Learning to compose neural networks for question answeringJacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein. NAACL(2016). [PDF] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relationsYunshi Lan, Shuohang Wang, Jing Jiang. TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphsAbujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum. WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervisionChen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao. ACL(2017). [PDF] [Code]
  3. Knowledge base question answering via encoding of complex query graphsKangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu. EMNLP(2018). [PDF] [Code]
  4. Neverending learning for open-domain question answering over knowledge basesAbujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum. WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge baseSen Hu, Lei Zou, Xinbo Zhang. EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decompositionWeiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng. VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query compositionBhutani, Nikita, Xinyi Zheng, H. Jagadish. CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answeringZi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku. NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model. * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphsGaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann. ISWC(2019). [PDF] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programsAmrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti. TACL(2019). [PDF][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question AnsweringJiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu. EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graphQiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng. CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge basesYawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu. AAAI(2020). [PDF] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge baseYongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi. IJCAI(2020). [PDF] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge basesYunshi Lan, Jing Jiang. ACL(2020). [PDF] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge BasesNikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish. ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answeringPavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu. Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

这篇关于基于语义解析的KBQA论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750891

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?