基于语义解析的KBQA论文

2024-02-27 02:04
文章标签 解析 论文 语义 kbqa

本文主要是介绍基于语义解析的KBQA论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简单KBQA

  1. Template-based question answering over RDF dataUnger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano. WWW(2012). [PDF]
  2. Large-scale semantic parsing via schema matching and lexicon extensionQingqing Cai, Alexander Yates. ACL(2013). [PDF]
  3. Semantic parsing on freebase from question-answer pairsJonathan Berant, Andrew Chou, Roy Frostig, Percy Liang. EMNLP(2013). [PDF]
  4. Large-scale semantic parsing without question-answer pairsSiva Reddy, Mirella Lapata, Mark Steedman. TACL(2014). [PDF]
  5. Semantic parsing for single relation question answeringWen-tau Yih, Xiaodong He, Christopher Meek. ACL(2014). [PDF]
  6. Information extraction over structured data: Question answering with FreebaseXuchen Yao, Benjamin Van Durme. ACL(2014). [PDF]
  7. Semantic parsing via staged query graph generation: Question answering with knowledge baseWen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. ACL(2015). [PDF]
  8. Simple question answering by attentive convolutional neural networkWenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze. COLING(2016). [PDF]
  9. Learning to compose neural networks for question answeringJacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein. NAACL(2016). [PDF] [Code]
  10. Knowledge base question answering with a matching-aggregation model and question-specific contextual relationsYunshi Lan, Shuohang Wang, Jing Jiang. TASLP(2019). [PDF]

复杂KBQA

  1. Automated template generation for question answering over knowledge graphsAbujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum. WWW(2017). [PDF]
  2. Neural symbolic machines: Learning semantic parsers on Freebase with weak supervisionChen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao. ACL(2017). [PDF] [Code]
  3. Knowledge base question answering via encoding of complex query graphsKangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu. EMNLP(2018). [PDF] [Code]
  4. Neverending learning for open-domain question answering over knowledge basesAbujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum. WWW(2018). [PDF]
  5. A state-transition framework to answer complex questions over knowledge baseSen Hu, Lei Zou, Xinbo Zhang. EMNLP(2018). [PDF]
  6. Question answering over knowledge graphs: Question understanding via template decompositionWeiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng. VLDB(2018). [PDF]
  7. Learning to answer complex questions over knowledge bases with query compositionBhutani, Nikita, Xinyi Zheng, H. Jagadish. CIKM(2019). [PDF]
  8. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answeringZi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku. NAACL(2019). [PDF]
  9. Multi-hop knowledge base question answering with an iterative sequence matching model. * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
  10. Learning to rank query graphs for complex question answering over knowledge graphsGaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann. ISWC(2019). [PDF] [Code]
  11. Complex program induction for querying knowledge bases in the absence of gold programsAmrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti. TACL(2019). [PDF][Code]
  12. Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question AnsweringJiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu. EMNLP(2019). [PDF]
  13. Hierarchical query graph generation for complex question answering over knowledge graphQiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng. CIKM(2020). [PDF]
  14. SPARQA: skeleton-based semantic parsing for complex questions over knowledge basesYawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu. AAAI(2020). [PDF] [Code]
  15. Formal query building with query structure prediction for complex question answering over knowledge baseYongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi. IJCAI(2020). [PDF] [Code]
  16. Query graph generation for answering multi-hop complex questions from knowledge basesYunshi Lan, Jing Jiang. ACL(2020). [PDF] [Code]
  17. Answering Complex Questions by Combining Information from Curated and Extracted Knowledge BasesNikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish. ACL(2020). [PDF]
  18. Leveraging abstract meaning representation for knowledge base question answeringPavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu. Findings of ACL(2021). [PDF]
  19. Exploiting Rich Syntax for Better Knowledge Base Question Answering
  20. ​​​​​​​RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering

这篇关于基于语义解析的KBQA论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750891

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实