paddlehub实现人物抠图换背景

2024-02-27 01:58

本文主要是介绍paddlehub实现人物抠图换背景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 简介
  • paddlehub安装
  • 功能实现
    • 引入库
    • 用到的hub库
    • 每帧的图像处理
    • 结果输出
  • 总结


前言

看完文章您将学会:

paddlehub的使用方法
如何用cv2加载图片并保存
如何用cv2逐帧加载视频以及将图片逐帧保存成视频
如何将png格式的图片放入另一张图片
本文涉及paddlehub的人脸检测、图像分割和图像生成三个部分
详细的文档请访问: https://www.paddlepaddle.org.cn/hub

简介

本项目通过人脸检测将人脸遮挡实现打马赛的功能,同时通过风格转换和抠图将人物放置在新的背景下实现换背景的效果。
处理后的图片效果图:
在这里插入图片描述

paddlehub安装

pip install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
paddlehub 中的模型对版本有要求
请安装最新版本的paddlehub
或者根据需要指定安装版本:

hub install name==version

功能实现

引入库

代码如下:

import paddle
import paddlehub as hub
import numpy as np
from PIL import Image, ImageFilter, ImageDraw
import cv2, osimport matplotlib.pyplot as plt
%matplotlib inlineprint(paddle.__version__)

用到的hub库

代码如下:

#用于人脸检测
face_detection = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
#用于风格转换
stylepro_artistic = hub.Module(name="stylepro_artistic")
#用于扣出人物
humanseg = hub.Module(name="deeplabv3p_xception65_humanseg")

可以查看一下数据的输出格式,本文中默认只考虑一个物体的情况:

# 查看一下使用方法及输出格式, 这里默认一张图片中只有一个目标物
face_detection_res = face_detection.face_detection(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir=None,confs_threshold=0.5)
# [0]['data']
result = stylepro_artistic.style_transfer( images=[{'content': cv2.imread('./dog.png'),'styles': [cv2.imread('./style/style1.jpg'), cv2.imread('./style/style2.jpg'),cv2.imread('./style/style3.jpg'),cv2.imread('./style/style4.jpg'),cv2.imread('./style/style5.jpg')]}],visualization=True)
# [0]['data']
seg_res = humanseg.segment(images=[cv2.imread('./work/me1.jpg')],paths=None,batch_size=1,use_gpu=False,visualization=True,output_dir='humanseg_output')
# [0]['data']

每帧的图像处理

通过修改precess_img可以实现不同的处理效果。

def process_img(frame_bgr, index=0):'''输入一张图片shape=[H, W, C] 通道为bgr格式'''ratio = 1.4 y_offset = 30num_fps = 150t = 1h, w = frame_bgr.shape[:2]size = frame_bgr.shape[:2]face_detector = MyFaceDetector()face_detection_res = face_detector.face_detection(images=[frame_bgr], use_gpu=False, visualization=False)for box_dict in face_detection_res[0]['data']:box_xyxy = ( int(box_dict['left']), int(box_dict['top']), int(box_dict['right']), int(box_dict['bottom']) )box_xywh = int((box_xyxy[0]+box_xyxy[2])/2), int((box_xyxy[1]+box_xyxy[3])/2), box_xyxy[2]-box_xyxy[0], box_xyxy[3]-box_xyxy[1]correct_box_xywh = box_xywh[0], box_xywh[1]-y_offset, int(box_xywh[2]*ratio), int(box_xywh[3]*ratio)#真实框xyxybox = int(correct_box_xywh[0]-correct_box_xywh[2]/2) if int(correct_box_xywh[0]-correct_box_xywh[2]/2) >= 0 else 0, \int(correct_box_xywh[1]-correct_box_xywh[3]/2) if int(correct_box_xywh[1]-correct_box_xywh[3]/2) >= 0 else 0, \int(correct_box_xywh[0]+correct_box_xywh[2]/2) if int(correct_box_xywh[0]+correct_box_xywh[2]/2) <= size[1] else size[1], \int(correct_box_xywh[1]+correct_box_xywh[3]/2) if int(correct_box_xywh[1]+correct_box_xywh[3]/2) <= size[0] else size[0]dog = cv2.imread('./dog.png', -1) # -1 读取alpha通道dog = cv2.resize(dog, ( box[2]-box[0] if (box[2]-box[0])>0 else 1 , box[3]-box[1] if (box[3]-box[1])>0 else 1) )dog_alpha = dog[:,:,3] != 0dog_alpha = np.repeat(dog_alpha[:,:,np.newaxis], axis=2, repeats=3)human_alpha = humanseg.segmentation(images=[frame_bgr],paths=None,batch_size=1,use_gpu=False,visualization=False,output_dir='humanseg_output')[0]['data']human_alpha = np.repeat(human_alpha[:,:,np.newaxis], axis=2, repeats=3) != 0if index <= num_fps:bg = cv2.imread('./bg1.png')bg = cv2.resize(bg, (w, h))elif index > num_fps and index < (num_fps + t*30):beta = (index-num_fps)/30bg = beta * cv2.imread('./bg2.jpg')/255. + (1 - beta) * cv2.imread('./bg1.jpg')/255.bg = bg * 255bg = bg.astype('uint8')bg = cv2.resize(bg, (w, h))else:bg = cv2.imread('./bg2.png')bg = cv2.resize(bg, (w, h))# 加了这两项后运算时间会大大延长# frame_bgr = stylepro_artistic.style_transfer(images=[{'content': frame_bgr,#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']# dog = stylepro_artistic.style_transfer(images=[{'content': dog[:,:,:3],#     'styles': [cv2.imread('./style/style1.jpg')]#                                                        }],  use_gpu=False,#                                                 visualization=False)[0]['data']bg[human_alpha] = frame_bgr[human_alpha] #根据alpah矩阵赋值bg[box[1]:box[1]+dog.shape[0], box[0]:box[0]+dog.shape[1], :][dog_alpha] = dog[:,:,:3][dog_alpha]#     dog = cv2.imread('./dog.png', -1)#     point_boxwh = (point[0], point[1] - (box[3]-box[1])//2 , box[2]-box[0], box[3]-box[1])
#
#     point_box = point_boxwh[0]-point_boxwh[2]//2 if (point_boxwh[0]-point_boxwh[2]//2) >= 0 else 0, \
#                 point_boxwh[1]-point_boxwh[3]//2 if (point_boxwh[1]-point_boxwh[3]//2) >= 0 else 0, \
#                 point_boxwh[0]+point_boxwh[2]//2 if (point_boxwh[0]+point_boxwh[2]//2) <= size[1] else size[1], \
#                 point_boxwh[1]+point_boxwh[3]//2 if (point_boxwh[1]+point_boxwh[3]//2) <= size[0] else size[0]
#     dog = cv2.resize(dog, ( point_box[2]-point_box[0] if (point_box[2]-point_box[0])>0 else 1,  point_box[3]-point_box[1] if (point_box[3]-point_box[1])>0 else 1) )
#     alpha_channel = dog[:,:,3] != 0
#     alpha_channel = np.repeat(alpha_channel[:,:,np.newaxis], axis=2, repeats=3)
# #     assert point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1]
#     frame_bgr[point_box[1]:point_box[1]+dog.shape[0], point_box[0]: point_box[0]+dog.shape[1],:][alpha_channel] = dog[:,:,:3][alpha_channel]return bgdef CutVideo2Image(video_path, img_path):#将视频输出为图像#video_path为输入视频文件路径#img_path为输出图像文件夹路径cap = cv2.VideoCapture(video_path)index = 0while(True):ret,frame = cap.read() if ret:cv2.imwrite(img_path+'/%d.jpg'%index, frame)index += 1else:breakcap.release()class MyFaceDetector(object):"""自定义人脸检测器基于PaddleHub人脸检测模型ultra_light_fast_generic_face_detector_1mb_640,加强稳定人脸检测框"""def __init__(self):self.module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")self.alpha = 0.75self.start_flag =1def face_detection(self,images, use_gpu=False, visualization=False):# 使用GPU运行,use_gpu=True,并且在运行整个教程代码之前设置CUDA_VISIBLE_DEVICES环境变量result = self.module.face_detection(images=images, use_gpu=use_gpu, visualization=visualization)if not result[0]['data']:return resultface = result[0]['data'][0]if self.start_flag == 1:self.left_s = result[0]['data'][0]['left']self.right_s = result[0]['data'][0]['right']self.top_s = result[0]['data'][0]['top']self.bottom_s = result[0]['data'][0]['bottom']self.start_flag=0else:# 加权平均上一帧和当前帧人脸检测框位置,以稳定人脸检测框self.left_s = self.alpha * self.left_s +  (1-self.alpha) * face['left'] self.right_s = self.alpha * self.right_s +  (1-self.alpha) * face['right'] self.top_s = self.alpha * self.top_s +  (1-self.alpha) * face['top']self.bottom_s = self.alpha * self.bottom_s + (1-self.alpha) * face['bottom'] result[0]['data'][0]['left'] = self.left_sresult[0]['data'][0]['right'] = self.right_sresult[0]['data'][0]['top'] = self.top_sresult[0]['data'][0]['bottom'] = self.bottom_sreturn result

结果输出

def generate_image():# 打开摄像头# capture  = cv2.VideoCapture(0) capture  = cv2.VideoCapture('./test.mp4')fps = capture.get(cv2.CAP_PROP_FPS)size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))# 将预测结果写成视频video_writer = cv2.VideoWriter('result.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, size)print(f'fps={fps}, size={size}')index = 0while True:# frame_rgb即视频的一帧数据ret, frame_bgr = capture.read() #从capture中读取帧# 按q键即可退出# cv2.imwrite('./work/me1.jpg', frame_bgr)# breakif cv2.waitKey(1) & 0xFF == ord('q'):breakif frame_bgr is None:break# cv2.imwrite('./work'+'/%d.jpg'%index, frame_bgr)index += 1#图像处理frame_bgr = process_img(frame_bgr, index)video_writer.write(frame_bgr) #写入帧# frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_RGB2BGR)  # cv2.COLOR_RGB2BGR就是把0, 2 通道互换# yield frame_rgbcapture.release()video_writer.release()cv2.destroyAllWindows()generate_image()

总结

视频中人物的抠图效果需要提升,可以通过在cv2中进一步处理提升画面效果。
另外声音需要后期合成后单独加入,后续我会想办法把声音加上。

总的来看,paddlehub将一些主流的模型集成起来做成相应的接口,当需要时直接调用即可,使用起来也非常方便。这极大的降低了网络的使用门槛,只需要少量的代码即可实现复杂的功能。

这篇关于paddlehub实现人物抠图换背景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750880

相关文章

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

Java根据IP地址实现归属地获取

《Java根据IP地址实现归属地获取》Ip2region是一个离线IP地址定位库和IP定位数据管理框架,这篇文章主要为大家详细介绍了Java如何使用Ip2region实现根据IP地址获取归属地,感兴趣... 目录一、使用Ip2region离线获取1、Ip2region简介2、导包3、下编程载xdb文件4、J

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Android实现一键录屏功能(附源码)

《Android实现一键录屏功能(附源码)》在Android5.0及以上版本,系统提供了MediaProjectionAPI,允许应用在用户授权下录制屏幕内容并输出到视频文件,所以本文将基于此实现一个... 目录一、项目介绍二、相关技术与原理三、系统权限与用户授权四、项目架构与流程五、环境配置与依赖六、完整

浅析如何使用xstream实现javaBean与xml互转

《浅析如何使用xstream实现javaBean与xml互转》XStream是一个用于将Java对象与XML之间进行转换的库,它非常简单易用,下面将详细介绍如何使用XStream实现JavaBean与... 目录1. 引入依赖2. 定义 JavaBean3. JavaBean 转 XML4. XML 转 J

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展