NYOJ - 多边形重心问题

2024-02-27 01:08
文章标签 问题 多边形 nyoj 重心

本文主要是介绍NYOJ - 多边形重心问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

描述
在某个多边形上,取n个点,这n个点顺序给出,按照给出顺序将相邻的点用直线连接, (第一个和最后一个连接),所有线段不和其他线段相交,但是可以重合,可得到一个多边形或一条线段或一个多边形和一个线段的连接后的图形;
如果是一条线段,我们定义面积为0,重心坐标为(0,0).现在求给出的点集组成的图形的面积和重心横纵坐标的和;
输入
第一行有一个整数0<n<11,表示有n组数据;
每组数据第一行有一个整数m<10000,表示有这个多边形有m个顶点;
输出
输出每个多边形的面积、重心横纵坐标的和,小数点后保留三位;
样例输入
3
3
0 1
0 2
0 3
3
1 1
0 0
0 1
4
1 1
0 0
0 0.5
0 1
样例输出
0.000 0.000
0.500 1.000
0.500 1.000


是一个数学问题,解题思路:

一个简单的计算几何。但是需要用到一些高中学到的向量和物理知识。我也是看了1个多小时的基础知识才A掉的。


需要知道的知识点有:

1.叉积和点积的区别和它们引进的用途。

既然是向量,它得定义大小和方向,所以不同于常规的数字。

点积和叉积都是为了解决实际意义引进的。

为了解决已知两有向线段,求以它们为邻边的平行四边形的面积的问题,引入了点积。因为点积的结果是面积大小,所以它只是一个数字,没有方向。

叉积的产生是为了产生新的向量,至于它的方向的规定,是为了和笛卡尔坐标系一致,我们判断两个向量叉积的方向需要用到右手螺旋定则,如果A X B,则A、B向量叉积的方向就是四指从A到B,大拇指方向就是叉积方向。

2.多边形面积怎么求。

分割成多个三角形即可

3.三角形面积用叉积怎么求。

x2*y1-x1y2

4.重心是什么。

google一下就OK了

5.重心和面积以及坐标的关系。

把每个三角形看作一个质量为面积的点,然后求出这个三角形X坐标平均值,相乘后得到这个点

将所有点同样处理后相加,最终结果除以多边形面积就是多边形重心的X坐标。

Y同理求得。


下面贴代码:

#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>const int MAXN = 100005;
const double INF = 1e-8;struct Point
{double x,y;
}p[MAXN];int main()
{int n, T;double temp;Point sym;scanf("%d", &T);while(T--){double ans = 0;sym.x = 0;sym.y = 0;scanf("%d", &n);for(int i = 0; i < n; i++)scanf("%lf %lf", &p[i].x, &p[i].y);for(int i = 1; i <= n; i++){temp = (p[i%n].x * p[i-1].y - p[i%n].y * p[i-1].x) / 2.0;ans += temp;sym.x += temp * (p[i%n].x + p[i-1].x) / 3.0;sym.y += temp * (p[i%n].y + p[i-1].y) / 3.0;}if(fabs(ans-0) < INF){printf("0.000 0.000\n");}else{printf("%.3lf %.3lf\n", fabs(ans), (sym.x + sym.y) / ans);}}return 0;
}


这篇关于NYOJ - 多边形重心问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750736

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复