【C++11并发】chrono 笔记

2024-02-27 01:04
文章标签 c++ 笔记 并发 chrono

本文主要是介绍【C++11并发】chrono 笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

C++11的chrono模块为我们主要提供了三个类:

  1. 表示时间点的time_point
  2. 表示时间段的duration
  3. 提供计时起点的clock

一般我们会通过clock获取时间点,两个时间点之差可以获取时间段。

头文件:<chrono>

std::chrono::duration

duration表示时间段,他的声明如下,是一个类模板

template<class Rep,class Period = std::ratio<1>
> class duration;

在duration内部保存了一个Rep类型的计时周期个数(It consists of a count of ticks of type Rep),Period为单位,就是通过相关方法获取时间段长度的时候,1表示的是1秒钟,还是1毫秒。
ratio的声明如下,也是一个类模板,只不过Num,Denom都是非类型模板参数,Num表示分子,Denom表示分母。比如std::ratio<1>表示秒,Demon默认等于1。std::ratio<1,1000>表示毫秒,std::ratio<60,1>表示分钟,以此类推。

template<std::intmax_t Num,std::intmax_t Denom = 1
> class ratio;

duration提供的方法主要有:
在这里插入图片描述

std::chrono::duration的构造方法

duration的构造方法声明如下:

constexpr duration() = default;         // 默认构造方法
duration( const duration& ) = default;  // 拷贝构造方法
template< class Rep2 >
constexpr explicit duration( const Rep2& r );    // 用r个计时周期初始化duration,例如:std::chrono::duration<int, std::kilo> ks(3); // 3000 seconds
template< class Rep2, class Period2 >
constexpr duration( const duration<Rep2, Period2>& d );

最后一个构造方法比较有意思,他的源码如下,其中也包含了第三个构造方法的源码:

template <class _Rep, class _Period>
class duration {
public:...template <class _Rep2, enable_if_t<is_convertible_v<const _Rep2&, _Rep> && (treat_as_floating_point_v<_Rep> !treat_as_floating_point_v<_Rep2>), int> = 0>duration(const _Rep2& _Val) : _MyRep(static_cast<_Rep>(_Val)) {}template <class _Rep2, class _Period2, enable_if_t<treat_as_floating_point_v<_Rep> || (_Ratio_divide_sfinae<_Period2, _Period>::den == 1 && !treat_as_floating_point_v<_Rep2>), int> = 0>duration(const duration<_Rep2, _Period2>& _Dur) : _MyRep(_CHRONO duration_cast<duration>(_Dur).count()) {}...private:_Rep _MyRep; // the stored rep
};

最后一个构造方法在基于d构造的时候,多做了一个duration_cast。duration_cast相当于是做了一个duration模板参数的类型转换(可以类比static_cast等,*_cast方法),下文详细解释。

std::chrono::duration的赋值操作符

赋值操作符的声明如下:

duration& operator=( const duration &other ) = default;

从声明就可以看出,赋值时“=”左右两边变量的模板参数必须一致,如果不一致就要使用duration_cast。例如:

std::chrono::duration<int, std::kilo> ks(3);
std::chrono::duration<int, std::pico> ps(6);
ks = ps;    // 编译报错
ks = std::chrono::duration_cast<int, std::kilo>(ps);std::chrono::duration<int, std::kilo> ks_new(6);
ks= ks_new;  // 编译通过

std::chrono::duration的count

count方法返回的是计时周期个数,如果单位是秒,则表示多少秒;即就是duration中保存的时长。

std::chrono::duration的operator+/-/++/–/+=/-=/*=//=

duration的这些一元和二元operator方法,都是针对计时周期的操作,他一般是基本类型,和平时用的加加减减一样。
在这里插入图片描述

std::chrono::duration的静态方法

这三个静态方法C++20才可以使用,分别返回时间长度为零的duration,返回duration的可以表示的最小时间段,返回最大时间段。
在这里插入图片描述

std::chrono::duration专用的duration_cast方法

他的声明如下:

template< class ToDuration, class Rep, class Period >
constexpr ToDuration duration_cast( const std::chrono::duration<Rep,Period>& d );

用于将一个duration转换成另外一个duration,其本质是模板参数的不同。

std::chrono::duration的helper types

在这里插入图片描述

Clocks

std::chrono提供了三种类型的时钟:system_clock、steady_clock和high_resolution_clock。

  1. system_clock:
  • system_clock是系统级别的时钟,它表示实时时钟,也就是指示当前时间的时钟。它的时间点是与系统的时钟相关联的,可能受到时钟调整和时区的影响。
  • system_clock用于获取当前的系统时间,可以用来进行日常时间计算和显示。它通常被用作默认的时钟类型。
  • system_clock的最小时间单位取决于系统,可能是秒、毫秒或微秒。
    struct system_clock{typedef chrono::nanoseconds				duration;typedef duration::rep					rep;typedef duration::period					period;typedef chrono::time_point<system_clock, duration> 	time_point;static constexpr bool is_steady = false;static time_point now() noexcept;...};
  1. steady_clock:
  • steady_clock是一个单调递增的时钟,不受任何时钟调整或时区的影响。它提供了一个稳定、可靠的时间基准,适合用于测量时间间隔和计算算法的执行时间。
  • steady_clock的最小时间单位取决于实现,通常是纳秒或微秒级别。
    struct steady_clock{typedef chrono::nanoseconds				duration;typedef duration::rep					    rep;typedef duration::period					period;typedef chrono::time_point<steady_clock, duration>	time_point;static constexpr bool is_steady = true;static time_point now() noexcept;};
  1. high_resolution_clock:

high_resolution_clock是一个可用于测量小时间间隔的时钟。它通常使用最高分辨率的时钟源来提供更高的时间精度。在大部分平台上,high_resolution_clock是steady_clock的别名,因此也是一个单调递增的时钟。
high_resolution_clock的最小时间单位取决于实现,通常是纳秒或微秒级别。

// https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/chrono.h
using high_resolution_clock = system_clock;

三个时钟都提供了一个静态成员变量:is_steady,表示时钟是否单调,true表示每次获取的时间是单调递增的。还提供了一个静态方法,用于获取当前时间点,其声明如下:

static std::chrono::time_point<std::chrono::system_clock> now() noexcept;

std::chrono::time_point

time_point表示时间点,他是一个类模板,声明如下:

template<class Clock,class Duration = typename Clock::duration
> class time_point;

一个时间点可以理解为相对于某一时间点的时间段,模板参数中的clock提供这个时间点,duration保存时间段。
time_point提供的方法如下
在这里插入图片描述

std::chrono::time_point的构造

time_point();    // 默认构造
explicit time_point( const duration& d );    // 用一个duration初始化,但是模板参数clock必须指定
template< class Duration2 >
time_point( const time_point<Clock, Duration2>& t );    // conversions

std::chrono::time_point的time_since_epoch

返回值是类型是时间长度(duration类型),即从纪元起点到now对应时间点间的时间长度

duration time_since_epoch() const;

std::chrono::time_point的time_point_cast

对于时间点类型,使用time_point_cast,相当于对时长类型,使用duration_cast

template< class ToDuration, class Clock, class Duration >
std::chrono::time_point<Clock, ToDuration> time_point_cast( const std::chrono::time_point<Clock, Duration> &t );template< class ToDuration, class Clock, class Duration >
constexpr std::chrono::time_point<Clock, ToDuration> time_point_cast( const std::chrono::time_point<Clock, Duration> &t );

参考

[1] https://zhuanlan.zhihu.com/p/662738124

这篇关于【C++11并发】chrono 笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750728

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java JUC并发集合详解之线程安全容器完全攻略

《JavaJUC并发集合详解之线程安全容器完全攻略》Java通过java.util.concurrent(JUC)包提供了一整套线程安全的并发容器,它们不仅是简单的同步包装,更是基于精妙并发算法构建... 目录一、为什么需要JUC并发集合?二、核心并发集合分类与详解三、选型指南:如何选择合适的并发容器?在多

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象