线段树(扫描线法,单点修改区间查询

2024-02-26 18:08

本文主要是介绍线段树(扫描线法,单点修改区间查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>using namespace std;const int N = 200010;int m, p;
struct Node
{int l, r;int v;  // 区间[l, r]中的最大值
}tr[N * 4];void pushup(int u)  // 由子节点的信息,来计算父节点的信息
{tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}void build(int u, int l, int r)
{tr[u] = {l, r};if (l == r) return;int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}int query(int u, int l, int r)
{if (tr[u].l >= l && tr[u].r <= r) return tr[u].v;   // 树中节点,已经被完全包含在[l, r]中了int mid = tr[u].l + tr[u].r >> 1;int v = 0;if (l <= mid) v = query(u << 1, l, r);if (r > mid) v = max(v, query(u << 1 | 1, l, r));return v;
}void modify(int u, int x, int v)
{if (tr[u].l == x && tr[u].r == x) tr[u].v = v;else{int mid = tr[u].l + tr[u].r >> 1;if (x <= mid) modify(u << 1, x, v);else modify(u << 1 | 1, x, v);pushup(u);}
}int main()
{int n = 0, last = 0;scanf("%d%d", &m, &p);build(1, 1, m);int x;char op[2];while (m -- ){scanf("%s%d", op, &x);if (*op == 'Q'){last = query(1, n - x + 1, n);printf("%d\n", last);}else{modify(1, n + 1, (last + x) % p);n ++ ;}}return 0;
}

在这里插入图片描述
线段树,懒标记(这道题需要两个懒标记,而且要根据加和·乘运算变成一个运算

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 100010;
int n,w[N],p;
struct node{int l,r,sum,add,mul;
}tr[4*N];
void pushup(int u){tr[u].sum=(tr[u<<1].sum+tr[u<<1|1].sum)%p;
}
// void eval(node &t,int add,int mul){
//     t.sum=(t.sum*mul+add)%p;
//     t.add=(t.add*mul+add)%p;
//     t.mul=(t.mul*mul)%p;
// }
void eval(int u,int add,int mul){tr[u].sum=(tr[u].sum*mul %p+ (tr[u].r-tr[u].l+1)*add   )%p;tr[u].add=(tr[u].add*mul+add)%p;tr[u].mul=(tr[u].mul*mul)%p;}
void pushdown(int u){eval(u<<1,tr[u].add,tr[u].mul);eval(u<<1|1,tr[u].add,tr[u].mul);tr[u].mul=1;tr[u].add=0;
}
void build(int u,int l,int r){if(l==r)tr[u]={l,r,w[r],0,1};else{tr[u]={l,r,0,0,1};int mid=l+r>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);}
}void modify(int u,int l,int r,int add,int mul){if(tr[u].l>=l&&tr[u].r<=r)eval(u,add,mul);else{pushdown(u);int mid=tr[u].l+tr[u].r>>1;if(mid<r)modify(u<<1|1,l,r,add,mul);if(mid>=l)modify(u<<1,l,r,add,mul);pushup(u);}
}
int query(int u,int l,int r){if(tr[u].l>=l&&tr[u].r<=r)return tr[u].sum;pushdown(u);int mid=tr[u].l+tr[u].r>>1;int ans=0;if(mid>=l)ans=query(u<<1,l,r);if(mid<r)ans=(ans+query(u<<1|1,l,r) )%p;return ans;
}
signed main(){cin>>n>>p;for(int i=1;i<=n;i++)cin>>w[i];build(1,1,n);int t;cin>>t;while(t--){int op,l,r;cin>>op>>l>>r;if(op==2){int add;cin>>add;modify(1,l,r,add,1);}else if(op==1){int mul;cin>>mul;modify(1,l,r,0,mul);}else cout<<query(1,l,r)<<endl;}
}

在这里插入图片描述
利用差分的思想和更相减损法求gcd知识,不用懒标记实现单点修改区间查询

#include<bits/stdc++.h>
#define node Node
using namespace std;
typedef long long LL;
#define int long long
const int N = 500010;
int n,m,w[N];
struct node{int l,r,sum,d;
}tr[N*4];int gcd(int a,int b){return b?gcd(b,a%b):a;
}void pushup(node & t,node & a,node &b){t.sum=a.sum+b.sum;t.d=gcd(a.d,b.d);
}
void pushup(int u){pushup(tr[u],tr[u<<1],tr[u<<1|1]);
}void build(int u, int l, int r)
{if (l == r){LL b = w[r] - w[r - 1];tr[u] = {l, r, b, b};}else{tr[u].l = l, tr[u].r = r;int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);pushup(u);}
}void modify(int u,int x,int v){if(tr[u].l==x&&tr[u].r==x){// tr[u].sum+=v;// tr[u].d+=v;int b=tr[u].sum+v;tr[u]={x,x,b,b};}else{int mid= tr[u].l+tr[u].r>>1;if(mid<x)modify(u<<1|1,x,v);else modify(u<<1,x,v);pushup(u);}
}Node query(int u, int l, int r)
{if (tr[u].l >= l && tr[u].r <= r) return tr[u];else{int mid = tr[u].l + tr[u].r >> 1;if (r <= mid) return query(u << 1, l, r);else if (l > mid) return query(u << 1 | 1, l, r);else{auto left = query(u << 1, l, r);auto right = query(u << 1 | 1, l, r);Node res;pushup(res, left, right);return res;}}
}signed main(){cin>>n>>m;for(int i=1;i<=n;i++)cin>>w[i];build(1,1,n);while(m--){char c;int l,r;cin>>c>>l>>r;if(c=='C'){int v;cin>>v;modify(1,l,v);//差分思想,l~r这段区间加上一个数要在l加上去,在r+1减回去if(r+1<=n)modify(1,r+1,-v);//边界}else{node left=query(1,1,l);node right={0,0,0,0};if(l+1<=r)right=query(1,l+1,r);cout<<abs( gcd(left.sum ,  right.d )  )<<endl;}}
}

在这里插入图片描述
在这里插入图片描述

我真的吐了我靠这个线段树的边界条件居然这么苛刻
在这里插入图片描述
只有这样才是正确的·
我快吐了woc


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 100010;
int n,w[N],m;struct node{int l,r,sum,add;
}tr[N*4];void pushup(int u){tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;
}
void pushdown(int u){auto &left=tr[u<<1];auto &right=tr[u<<1|1];auto &root=tr[u];if(root.add){left.add+=root.add,left.sum+=(left.r-left.l+1)*root.add;right.add+=root.add,right.sum+=(right.r-right.l+1)*root.add;root.add=0;}
}
void build(int u,int l,int r){if(l==r)tr[u]={l,r,w[l],0};else{tr[u]={l,r};int mid=l+r>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);}
}void  modify(int u,int l,int r,int v){if(tr[u].l>=l&&tr[u].r<=r){tr[u].sum+= (tr[u].r-tr[u].l+1)*v;tr[u].add+=v;}else{pushdown(u);int mid=tr[u].l+tr[u].r>>1;if(l<=mid)modify(u<<1,l,r,v);if(mid<r)modify(u<<1|1,l,r,v);pushup(u);}
}int query(int u,int l,int r){if(tr[u].l>=l&&tr[u].r<=r)return tr[u].sum;else{pushdown(u);int mid=tr[u].l+tr[u].r>>1;int ans=0;if(l<=mid)ans=query(u<<1,l,r);if(mid<r)ans+=query(u<<1|1,l,r);pushup(u);return ans;}
}signed main(){cin>>n>>m;for(int i=1;i<=n;i++)cin>>w[i];build(1,1,n);char op[2];int l,r;while(m--){scanf("%s%d%d",op,&l,&r);//cout<<*op<<endl;if(*op=='Q')cout<<query(1,l,r)<<endl;else{int v;cin>>v;modify(1,l,r,v);}}
}

在这里插入图片描述
这道题·维护的东西有点多
lmax表示最大前缀和
rmax表示最大后缀和
tmax表示最大子串和
sum表示求和

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>using namespace std;const int N = 500010;int n, m;
int w[N];
struct Node
{int l, r;int sum, lmax, rmax, tmax;
}tr[N * 4];void pushup(Node &u, Node &l, Node &r)
{u.sum = l.sum + r.sum;u.lmax = max(l.lmax, l.sum + r.lmax);u.rmax = max(r.rmax, r.sum + l.rmax);u.tmax = max(max(l.tmax, r.tmax), l.rmax + r.lmax);
}void pushup(int u)
{pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}void build(int u, int l, int r)
{if (l == r) tr[u] = {l, r, w[r], w[r], w[r], w[r]};else{tr[u] = {l, r};int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);pushup(u);}
}void modify(int u, int x, int v)
{if (tr[u].l == x && tr[u].r == x) tr[u] = {x, x, v, v, v, v};else{int mid = tr[u].l + tr[u].r >> 1;if (x <= mid) modify(u << 1, x, v);else modify(u << 1 | 1, x, v);pushup(u);}
}Node query(int u, int l, int r)
{if (tr[u].l >= l && tr[u].r <= r) return tr[u];else{int mid = tr[u].l + tr[u].r >> 1;if (r <= mid) return query(u << 1, l, r);else if (l > mid) return query(u << 1 | 1, l, r);else{auto left = query(u << 1, l, r);auto right = query(u << 1 | 1, l, r);Node res;pushup(res, left, right);return res;}}
}int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]);build(1, 1, n);int k, x, y;while (m -- ){scanf("%d%d%d", &k, &x, &y);if (k == 1){if (x > y) swap(x, y);printf("%d\n", query(1, x, y).tmax);}else modify(1, x, y);}return 0;
}

在这里插入图片描述

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>using namespace std;const int N = 100010;int n;
struct Segment
{double x, y1, y2;int k;bool operator< (const Segment &t)const{return x < t.x;}
}seg[N * 2];
struct Node
{int l, r;int cnt;double len;
}tr[N * 8];vector<double> ys;int find(double y)
{return lower_bound(ys.begin(), ys.end(), y) - ys.begin();
}void pushup(int u)
{if (tr[u].cnt) tr[u].len = ys[tr[u].r + 1] - ys[tr[u].l];else if (tr[u].l != tr[u].r){tr[u].len = tr[u << 1].len + tr[u << 1 | 1].len;}else tr[u].len = 0;
}void build(int u, int l, int r)
{tr[u] = {l, r, 0, 0};if (l != r){int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);}
}void modify(int u, int l, int r, int k)
{if (tr[u].l >= l && tr[u].r <= r){tr[u].cnt += k;pushup(u);}else{int mid = tr[u].l + tr[u].r >> 1;if (l <= mid) modify(u << 1, l, r, k);if (r > mid) modify(u << 1 | 1, l, r, k);pushup(u);}
}int main()
{int T = 1;while (scanf("%d", &n), n){ys.clear();for (int i = 0, j = 0; i < n; i ++ ){double x1, y1, x2, y2;scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);seg[j ++ ] = {x1, y1, y2, 1};seg[j ++ ] = {x2, y1, y2, -1};ys.push_back(y1), ys.push_back(y2);}sort(ys.begin(), ys.end());ys.erase(unique(ys.begin(), ys.end()), ys.end());build(1, 0, ys.size() - 2);sort(seg, seg + n * 2);double res = 0;for (int i = 0; i < n * 2; i ++ ){if (i > 0) res += tr[1].len * (seg[i].x - seg[i - 1].x);modify(1, find(seg[i].y1), find(seg[i].y2) - 1, seg[i].k);}printf("Test case #%d\n", T ++ );printf("Total explored area: %.2lf\n\n", res);}return 0;
}作者:yxc
链接:https://www.acwing.com/activity/content/code/content/167934/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

线段树学了一天了,加油加油

这篇关于线段树(扫描线法,单点修改区间查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749710

相关文章

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

MySQL之复合查询使用及说明

《MySQL之复合查询使用及说明》文章讲解了SQL复合查询中emp、dept、salgrade三张表的使用,涵盖多表连接、自连接、子查询(单行/多行/多列)及合并查询(UNION/UNIONALL)等... 目录复合查询基本查询回顾多表查询笛卡尔积自连接子查询单行子查询多行子查询多列子查询在from子句中使

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I