学习 LangChain 的 LCEL

2024-02-26 13:20
文章标签 学习 langchain lcel

本文主要是介绍学习 LangChain 的 LCEL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习 LangChain 的 LCEL

  • 0. 引言
  • 1. 基本示例:提示+模型+输出解析器​
    • 1-1. Prompt​
    • 1-2. Model
    • 1-3. Output parser
    • 1-4. Entire Pipeline

0. 引言

LCEL(LangChain Expression Language) 可以轻松地从基本组件构建复杂的链,并支持开箱即用的功能,例如流式传输、并行性和日志记录。

1. 基本示例:提示+模型+输出解析器​

最基本和常见的用例是将提示模板和模型链接在一起。为了看看这是如何工作的,让我们创建一个接受主题并生成笑话的链:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAIprompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")
model = ChatOpenAI(model="gpt-4")
output_parser = StrOutputParser()chain = prompt | model | output_parserchain.invoke({"topic": "ice cream"})

请注意这行代码,我们使用 LCEL 将不同的组件拼凑成一个链:

chain = prompt | model | output_parser

| 符号类似于 unix 管道运算符,它将不同的组件链接在一起,将一个组件的输出作为下一个组件的输入。

在此链中,用户输入传递到提示模板,然后提示模板输出传递到模型,然后模型输出传递到输出解析器。让我们分别看一下每个组件,以真正了解发生了什么。

1-1. Prompt​

prompt 是一个 BasePromptTemplate ,这意味着它接受模板变量的字典并生成一个 PromptValuePromptValue 是一个完整提示的包装器,可以传递给 LLM (它接受一个字符串作为输入)或 ChatModel (它接受一个序列作为输入的消息)。它可以与任何一种语言模型类型一起使用,因为它定义了生成 BaseMessage 和生成字符串的逻辑。

prompt_value = prompt.invoke({"topic": "ice cream"})
prompt_value
prompt_value.to_messages()
prompt_value.to_string()

1-2. Model

然后 PromptValue 被传递给 model 。在本例中,我们的 modelChatModel ,这意味着它将输出 BaseMessage

message = model.invoke(prompt_value)
message

如果我们的 modelLLM ,它将输出一个字符串。

from langchain_openai.llms import OpenAIllm = OpenAI(model="gpt-3.5-turbo-instruct")
llm.invoke(prompt_value)

1-3. Output parser

最后,我们将 model 输出传递给 output_parser ,这是一个 BaseOutputParser ,意味着它接受字符串或 BaseMessage 作为输入。 StrOutputParser 特别简单地将任何输入转换为字符串。

output_parser.invoke(message)

1-4. Entire Pipeline

请按照以下步骤操作:

  1. 我们将所需主题的用户输入传递为 {"topic": "ice cream"}

  2. prompt 组件获取用户输入,然后在使用 topic 构造提示后,将其用于构造 PromptValue

  3. model 组件获取生成的提示,并传递到 OpenAI LLM 模型进行评估。模型生成的输出是一个 ChatMessage 对象。

  4. 最后, output_parser 组件接收 ChatMessage ,并将其转换为 Python 字符串,该字符串从 invoke 方法返回。

在这里插入图片描述
请注意,如果您对任何组件的输出感到好奇,您始终可以测试链的较小版本,例如 promptprompt | model 以查看中间结果:

input = {"topic": "ice cream"}prompt.invoke(input)
# > ChatPromptValue(messages=[HumanMessage(content='tell me a short joke about ice cream')])(prompt | model).invoke(input)
# > AIMessage(content="Why did the ice cream go to therapy?\nBecause it had too many toppings and couldn't cone-trol itself!")

refer: https://python.langchain.com/docs/expression_language/get_started

这篇关于学习 LangChain 的 LCEL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749009

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;