计网Lesson14 - 传输层协议头分析

2024-02-26 12:28

本文主要是介绍计网Lesson14 - 传输层协议头分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 传输层概述
    • 1.1 传输层的作用
    • 1.2 传输层中两个重要协议
      • 1.2.1 TCP
      • 1.2.2 UDP
      • 1.2.3. 因特网中典型应用使用的运输层协议
    • 1.3 运输层端口号
    • 1.4 UDP和TCP的对比
  • 2. UDP报文段格式
    • UDP首部构成
  • 3. TCP报文段格式
    • TCP首部构成
    • 序号和确认号的计算



1. 传输层概述

1.1 传输层的作用

  • 计网中的物理层、数据链路层和网络层共同解决了异构网络之间的通讯问题,实现主机到主机的通信
  • 传输层的主要任务是:为运行在不同主机上的应用进程提供直接的逻辑通信服务,也叫端到端的通信
  • 传输层为应用层提供端口,用来区分不同应用进程的标识符,为应用层屏蔽了下层的细节,好像一根管道直接连接了两主机的同一应用。

1.2 传输层中两个重要协议

1.2.1 TCP

  • 传输控制协议(Transmission Control Protocol,TCP)为其上层提供的是面向连接的可靠的数据传输服务。
  • 使用双方必须先建立逻辑上的TCP连接。在传输完数据之后必须释放TCP连接。
  • TCP为了实现可靠传输,就必须使⽤很多措施,例如TCP连接管理、确认机制、超时重传、流量控制以及拥塞控制等。
  • TCP的实现复杂,TCP报⽂段的首部比较大,占用处理机资源比较多。

1.2.2 UDP

  • ⽤户数据报协议(User Datagram Protocol,UDP)为其上层提供的是⽆连接的不可靠的数据传输服务。
  • 使⽤UDP通信的双方,在传送数据之前不需要建立连接。
  • UDP不需要实现可靠传输,因此不需要使用实现可靠传输的各种机制。
  • UDP的实现简单,UDP⽤户数据报的首部比较小。

1.2.3. 因特网中典型应用使用的运输层协议

在这里插入图片描述

1.3 运输层端口号

在这里插入图片描述
在这里插入图片描述

  • TCP(传输控制协议)和UDP(用户数据报协议)的端口号是独立的,它们之间没有任何关系。也就是说,同一台计算机上的TCP端口12345和UDP端口12345可以同时存在,它们是完全不同的端口,互不影响。这是因为TCP和UDP是两种不同的协议,它们各自维护自己的端口号空间。所以,当我们谈论网络端口时,必须同时指明协议类型(TCP或UDP)和端口号。例如,“TCP端口80”和“UDP端口80”指的是两个完全不同的端口。

1.4 UDP和TCP的对比

在这里插入图片描述



2. UDP报文段格式

  • UDP不需要建立连接,减少了建立与释放连接的开销。
  • UDP不保证可靠传输
    • 所以没有很复杂的协议头的参数,首部仅占 8 8 8字节(TCP占 20 20 20字节)。

在这里插入图片描述

UDP首部构成

  • UDP⻓度
    • 占16位,描述首部的长度+数据长度的和。
  • 校验和
    • 伪首部 + 首部 + 数据在这里插入图片描述

    • 伪首部是由传输层的UDP自行构造出的的首部,用于计算校验和,计算完成后丢掉。
      在这里插入图片描述



3. TCP报文段格式

TCP首部构成

在这里插入图片描述

  • 序号

    • 对于一些大数据,我们会对齐进行分包,所以需要依靠序号来给包排序。
    • 占32⽐特,取值范围 0 0 0 ~ 2 32 − 1 2^{32}-1 2321。当序号增加到最后⼀个时,下⼀个序号又回到0。
    • 序号是根据包的字节数来累加的,例如序号从 0 0 0开始,发出了一个大小为 100 100 100字节的包,那么下一个包的序号就是 99 + 1 = 100 99 + 1 = 100 99+1=100,也就是下一个包开始的序号。
  • 确认号

    • 占用32位,取值范围是 0 0 0 ~ 2 32 − 1 2^{32}-1 2321。当确认号增加到最后一个时,下一个确认号会回到0。这是用来指出期望收到对方下一个TCP报文段的数据载荷的第一个字节的序号,同时也是对之前收到的所有数据的确认
    • 确认号跟序号是联动的。
  • 确认标志位ACK

    • 只有当ACK取值为 1 1 1时,确认号字段才有效。ACK取值为 0 0 0时,确认号字段无效。TCP规定:在TCP连接建立后,所有传送的TCP报文段都必须把ACK置 1 1 1
  • 数据偏移

    • 占4比特,该字段的取值以4字节为单位。
      • 也就是说,真实长度 = 值 * 4
    • 指出TCP报⽂段的数据载荷部分的起始处距离TCP报⽂段的起始处有多远,这实际上指出了TCP报文段的首部长度。
  • 窗口

    • 占16比特,该字段的取值以字节为单位。
    • 指出发送本报文段的一方的接收窗口的大小,即接收缓存的可用空间大小,这⽤来表征接收方的接收能力。
    • 在计算机网络中,经常用接收方的接收能力的大小来控制发送方的数据发送量,这就是所谓的
      流量控制。
  • 校验和

    • 占16比特,用来校验TCP报文段在传输中是否出现错误。在这里插入图片描述
  • 标志位

    • 同步标志位SYN
      • SYN为1的TCP报文段要么是⼀个连接请求报文段,要么是⼀个连接响应报文段。
    • 终⽌标志位FIN
      • ⽤于TCP“四报文挥手”释放连接。
      • 当FIN=1时,表明此TCP报文段的发送方已经将全部数据发送完毕,现在要求释放TCP连接。
    • 复位标志位RST
      • ⽤于复位TCP连接。
      • 当RST=1时,表明TCP连接中出现严重差错,必须释放连接,然后再重新建⽴连接。
      • RST置1还⽤来拒绝⼀个⾮法的TCP报⽂段或拒绝打开⼀个TCP连接。
    • 推送标志位PSH
      • 发送⽅TCP把PSH置1,并⽴即创建⼀个TCP报⽂段发送出去,⽽不需要积累到足够多的数据再发送。
      • 接收⽅TCP收到PSH为1的TCP报⽂段,就尽快地交付给应⽤进程,⽽不再等到接收到足够 多的数据才向上交付。
  • 选项(长度可变,最大40字节)

    • 最⼤报⽂段⻓度MSS选项:指出TCP报⽂段数据载荷部分的最大长度,而不是整个TCP报⽂段的⻓度。
    • 窗⼝扩⼤选项:⽤来扩⼤窗⼝,提⾼吞吐率。
    • 时间戳选项:
      • ⽤于计算往返时间RTT
      • ⽤于处理序号超范围的情况,⼜称为防⽌序号绕回PAWS。
    • 选择确认选项:⽤来实现选择确认功能。

序号和确认号的计算

在这里插入图片描述
在这里插入图片描述
1. 根据第三个包算出第一个包的序列号: 900 − 400 − 300 = 200 900 - 400 - 300 = 200 900400300=200
2. 得到第一个包的确认号: 200 + 300 = 500 200 + 300 = 500 200+300=500
3. 由于第二个包丢了,所以需要重传,返回 500 500 500

总之差不多是这样的:
甲:

  • 序号A,确认号K,数据长度length。

乙:

  • 序号K,确认号A + length。

总结:翻转(加长度)

这篇关于计网Lesson14 - 传输层协议头分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748875

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三