python统计分析——多解释变量的方差分析

2024-02-26 09:36

本文主要是介绍python统计分析——多解释变量的方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:用python动手学统计学

1、导入库

# 导入库
# 用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
# 用于估计统计模型的库
import statsmodels.formula.api as smf
import statsmodels.api as sm

2、数据准备

本次数据为准预测销售额的模型,包含湿度、气温、天气(晴或雨)、价格4个解释变量。天气为分类变量,其余为连续变量。

sales=pd.read_csv(r"文件路径")
sales

3、数据可视化展示

        在进行数据分析时,第一步永远是可视化。统计、模型化等工作都要放在后面做。由于及时变量有多个,因此这里绘制散点图矩阵。如下

sns.pairplot(data=sales,hue='weather')

        在矩阵图中,可以看出除了气温湿度有明显的正相关关系外,其他因素间没有明显的关系。

4、多解释变量模型

# 拟合多解释变量的模型
# 在定义多解释变量的模型时,解释变量之间用加号连接
lm_sales=smf.ols("sales~weather+humidity+temperature+price",data=sales).fit()
# 输出估计参数
lm_sales.params

5、模型选择

在typeⅠ ANOVA中,如果改变解释变量的顺序,检验结果会不一样。在方差分析中,解释变量的效应是基于残差量化的,变量个数增加时所减少的残差平方和决定了变量的效应。在多解释变量模型中,变量个数增加时所减少的残差平方和决定了变量的效应大小,在这种情况下变量平方和的值会因其添加的顺序不同而不同,对于解释变量是否存在显著性影响的判断也不同。对多解释变量模型进行type Ⅰ ANOVA可能会导致错误的结论。具体示例请查阅:《用python动手学统计学》一书。

type Ⅱ ANOVA是方差分析的一种,它的结果不会因解释变量顺序的不同而不同。typeⅡ ANOVA 根据解释变量减少时所增加的残差平方和量化解释变量的效应。即使解释变量的顺序不同,这种方法的效果也不会改变。通过这种方法得到的组间偏差平方和就叫作调整平方和。

当解释变量只有一个时,type Ⅰ ANOVA与type Ⅱ ANOVA的结果相等。

6、方差分析

# 输出方差分析表
print(sm.stats.anova_lm(lm_sales,typ=2))

由此方差分析表可知,humidity的p值为0.578,湿度对销售额没有显著影响。

结合前面的可视化作图,可知气温和湿度的相关性很强,因此可能存在这种情况:如果模型中包含了气温,就无法认为湿度会对销售额产生显著影响。下面我们继续对不含湿度的模型进行方差分析。

# 拟合不含湿度的模型
mod_non_humi=smf.ols('sales~weather+temperature+price',data=sales).fit()
#输出方差分析表
print(sm.stats.anova_lm(mod_non_humi,typ=2).round(3))

 由上表可知,目前所有变量都是必要的,至此,变量的选择结束。

系数等结果的解读应该使用变量选择后的模型进行,不应该将通过错误的变量组合进行模型化的结果用于预测或解读。

因此,本例的模型参数如下:

mod_non_humi.params

7、使用AIC进行变量选择

如果使用AIC 进行变量选择,就没有必要像方差分析那样更滑计算方法,直接建模并计算AIC即可。

print('包含所有变量的模型:',lm_sales.aic.round(3))
print('不含湿度的模型:',mod_non_humi.aic.round(3))

不含湿度的模型的AIC更小,所以湿度不应该包含在销售额预测模型中。原则上应该对比所有变量组合的AIC。

使用AIC进行变量选择的过程是比较固定的。它和系数t检验不同,多水平的变量不会导致多重假设检验问题,所得模型的含义永远是“对未知数据的预测误差最小的变量组合”。AIC也没有检验的非对称性问题。不过,与不能过度信任p值类似,我们也不能过度信任AIC,还应该从系数的含义、变量选择的结果、残差等多个方面综合评估模型。

8、多重共线性

在解释变量之间相关性很强时出现的问题就是多重共线性。在本例中,气温与湿度就是相关的,在解读类似模型时需要注意这一点。

多重共线性问题最简单的解决方案就是去掉强相关变量中的一个。多重共线性会对系数的解读造成干扰,我们应该先进行变量选择再解读结果。

在变量选择的过程中有时会使用检验,但如果变量之间强相关(如相关系数接近1),检验所得的p值也会收到干扰。

这篇关于python统计分析——多解释变量的方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748420

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar