使用wandb/tensorboard管理、可视化卷积神经网络训练日志

本文主要是介绍使用wandb/tensorboard管理、可视化卷积神经网络训练日志,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • wandb
    • 训练参数配置
    • 数据记录
      • 硬件情况记录
      • 数值记录
      • 参数分布记录
      • 特征图记录
    • 误删训练的记录如何恢复
  • tensorboard
    • 数据记录
      • 硬件数据
      • 数值记录
  • torchsummary


wandb

##安装注册
安装wandb库,输入wandb login命令获取API key(40位),或直接输入命令wandb login your_API_key登录个人wandb账号

pip install wandb
wandb login

训练参数配置

wandb.init函数中指定项目名、团队名(可省略,注意项目对团队的权限)和训练参数,这些训练参数在wandb记录的日志中可以查看,方便直观地分析不同训练中参数的调整及其影响,也可以编辑每一个训练日志的Name和Notes对其进行标记。

wandb.init(project="pytorch-intro",  # project_nameentity="neverbackdown",   # team_nameconfig={                  # training_config"learning_rate": 0.01,"batch_size": 16,"val_batch_size": 16,"freeze_epochs": 50,"epochs": 200,"depth": 50,"lr": 1e-5,"momentum": 0.1,"no_cuda": False,"seed": 42,"log_interval": 10,})
wandb.watch_called = False
config = wandb.config  # Initialize config

数据记录

硬件情况记录

wandb自动记录硬件数据,如GPU使用率、磁盘访问等,可用于分析性能瓶颈。

数值记录

每一代训练结束后记录train_loss,验证结束后记录precision、recall、valid_loss等参数,并保存wandb日志文件和权重文件。

 wandb.log({"epoch": epoch+1})# after trainingwandb.log({"training loss": np.mean(loss_hist)})# after validation
wandb.log({'val loss': float(classification_loss + regression_loss),'mAP': float(mAP),'precision': float(precision),'recall': float(recall)})# save weights.pt
torch.save(retinanet.module.state_dict(), f'logs/weights/{dataset_name}_retinanet_rotate_{epoch_num}.pt')  # only paras
torch.save(net.module, f'logs/weights/{dataset_name}_pre-retinanet_rotate_jitter_labelsmooth_{epoch_num}.pt')  # whole modulewandb.save(f'model_{epoch_num}.h5')

中断训练的损失函数查看方式
当训练中断或需要从指定epoch开始重新训练时,wandb默认的损失函数图横坐标为step,即从0开始绘制,无法直观看出损失函数的连续变化。解决办法是保存epoch值(代码第一行),并edit panel将横坐标改为epoch,即可按epoch查看损失函数。

参数分布记录

wandb.watch(model, log="all")  # 观察所有参数

特征图记录

采用register_forward_pre_hook(hook: Callable[..., None])函数实现,括号中的参数是一个函数名,暂且称之为hook_func,函数内容需要自行实现。其参数module, input, output固定,分别代表模块名称、一个tensor组成的tuple输入和tensor输出。关于该函数详细解释可参考博文。
由于hook_func参数固定,故定义get_image_name_for_hook函数为不同特征图命名,并定义全局变量COUNT表示特征图在网络结构中的顺序。具体实现如下。

COUNT = 0  # global_para for featuremap naming
IMAGE_FOLDER = './save_image'
INSTANCE_FOLDER = Nonedef hook_func(module, input, output):image_name = get_image_name_for_hook(module)data = output.clone().detach().permute(1, 0, 2, 3)# torchvision.utils.save_image(data, image_name, pad_value=0.5)from PIL import Imagefrom torchvision.utils import make_gridgrid = make_grid(data, nrow=8, padding=2, pad_value=0.5, normalize=False, range=None, scale_each=False)ndarr = grid.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()im = Image.fromarray(ndarr)# wandb save from jpg/png filewandb.log({f"{image_name}": wandb.Image(im)})# save locally# im.save(image_path)def get_image_name_for_hook(module):os.makedirs(INSTANCE_FOLDER, exist_ok=True)base_name = str(module).split('(')[0]image_name = '.'  # '.' is surely exist, to make first loop condition Trueglobal COUNTwhile os.path.exists(image_name):COUNT += 1image_name = '%d_%s' % (COUNT, base_name)return image_nameif __name__ == '__main__':# clear output folderif os.path.exists(IMAGE_FOLDER):shutil.rmtree(IMAGE_FOLDER)# TODO: wandb & model initializationmodel.eval()# layers to logmodules_for_plot = (torch.nn.LeakyReLU, torch.nn.BatchNorm2d, torch.nn.Conv2d)for name, module in model.named_modules():if isinstance(module, modules_for_plot):module.register_forward_hook(hook_func)index = 1for idx, batch in enumerate(val_loader):# global COUNTCOUNT = 1INSTANCE_FOLDER = os.path.join(IMAGE_FOLDER, f'{index}_pic')# forwardimages_val = Variable(torch.from_numpy(batch[0]).type(torch.FloatTensor)).cuda()outputs = model(images_val)

误删训练的记录如何恢复

误删记录后,再用本地记录上传的方式行不通,会显示“run XXX was previously created and deleted; try a new run name (<Response [409]>)”。
只需要进入该项目的 Overview 界面,点开右上角的按钮会显示“Undelete recently deleteed runs”,单击即可恢复该项目所有的runs。


tensorboard

数据记录

硬件数据

命令行输入nvidia-smi查看GPU使用情况,或在 任务管理器(Ctrl+Alt+Delete)-性能 中查看。

数值记录

每一代训练结束后记录train_loss,验证结束后记录precision、recall、valid_loss等参数,并保存权重文件。

def train(model, yolo_loss, epoch, writer):# after trainwriter.add_scalars('Train/loss', {'total loss': float(loss),'classification loss': float(classification_loss),'regression loss': float(regression_loss)}, epoch_num)# after validwriter.add_scalars('Validation/loss', {'classification_loss': float(classification_loss),'regression_loss': float(regression_loss),'total_loss': float(classification_loss + regression_loss)}, epoch_num)writer.add_scalar('Validation/mAP', float(mAP), epoch_num)writer.add_scalars('Validation/PR_curve', {'precision': float(precision),'recall': float(recall)}, epoch_num)# save weights.pttorch.save(retinanet.module.state_dict(), f'logs/weights/{dataset_name}_retinanet_rotate_{epoch_num}.pt')  # only parastorch.save(net.module, f'logs/weights/{dataset_name}_pre-retinanet_rotate_jitter_labelsmooth_{epoch_num}.pt')  # whole moduleif __name__ == "__main__":log_writer = SummaryWriter('logs/tensorboard/FPN/')train(model, yolo_loss, epoch, log_writer)

SummaryWriter记录的文件夹父目录下用命令行打开tensorboard查看训练日志。

tensorboard --logdir "log_filepath"

torchsummary

可以在网络定义文件的main函数里查看网络结构,包括每一层的输出尺寸、参数量和网络总参数量等。

from torchsummary import summaryif __name__ == "__main__":device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = YoloBody(9, 3).cuda()summary(model, input_size=(3, 416, 416))

这篇关于使用wandb/tensorboard管理、可视化卷积神经网络训练日志的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748069

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用