深度学习手写字符识别:推理过程

2024-02-26 00:36

本文主要是介绍深度学习手写字符识别:推理过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。
第一个深度学习实例手写字符识别

深度学习环境配置

可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。
Windows11搭建GPU版本PyTorch环境详细过程

数据集

手写字符识别用到的数据集是MNIST数据集(Mixed National Institute of Standards and Technology database);MNIST是一个用来训练各种图像处理系统二进制图像数据集,广泛应用到机器学习中的训练和测试。
作为一个入门级的计算机视觉数据集,发布20多年来,它已经被无数机器学习入门者应用无数遍,是最受欢迎的深度学习数据集之一。

序号说明
发布方National Institute of Standards and Technology(美国国家标准技术研究所,简称NIST)
发布时间1998
背景该数据集的论文想要证明在模式识别问题上,基于CNN的方法可以取代之前的基于手工特征的方法,所以作者创建了一个手写数字的数据集,以手写数字识别作为例子证明CNN在模式识别问题上的优越性。
简介MNIST数据集是从NIST的两个手写数字数据集:Special Database 3 和Special Database 1中分别取出部分图像,并经过一些图像处理后得到的。MNIST数据集共有70000张图像,其中训练集60000张,测试集10000张。所有图像都是28×28的灰度图像,每张图像包含一个手写数字。

手写字符识别模型训练

可以参考下篇博客:
深度学习手写字符识别:训练模型

手写字符识别推理过程

  1. 选用训练好的模型output/params_yl.pth
    在这里插入图片描述

  2. Pycharm运行AI_course/classify_pytorch/test_mnist.py文件,输入的手写字符图片里的数字是“4”。
    在这里插入图片描述

  3. 推理源码如下:

import torch
import cv2
from torch.autograd import Variable
from torchvision import transforms
from models.cnn import Net
from toonnx import to_onnxuse_cuda = False
model = Net(10)
# 注意:此处应把pth文件改为你训练出来的params_x.pth,x为epoch编号,
# 一般来讲,编号越大,且训练集(train)和验证集(val)上准确率差别越小的(避免过拟合),效果越好。
model.load_state_dict(torch.load('output/params_yl.pth'))
# model = torch.load('output/model.pth')
model.eval()
if use_cuda and torch.cuda.is_available():model.cuda()#to_onnx(model, 3, 28, 28, 'output/params.onnx')img = cv2.imread('4_00440.jpg')
img = cv2.resize(img, (28, 28))
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.unsqueeze(0)
if use_cuda and torch.cuda.is_available():prediction = model(Variable(img_tensor.cuda()))
else:prediction = model(Variable(img_tensor))
pred = torch.max(prediction, 1)[1]
print(prediction)
print(pred)
cv2.imshow("image", img)
cv2.waitKey(0)
  1. 运行结果:打印其张量,可以看到用训练模型output/params_yl.pth的推理后结果,输入一张手下字4,最终推理结果是4;打印出0-9数字的概率,可以看到“4”的概率最高。
    在这里插入图片描述
  2. 验证推理有效性:为了验证其推理的真实性,重新手写一个手写字符。注意,得和训练集里的字符一样,黑底白字形式。
  • 手写“0”,识别出来的是“0”
    在这里插入图片描述
    在这里插入图片描述
  • 手写“3”,识别出来的是“3”
    在这里插入图片描述
    在这里插入图片描述
  • 手写“5”,识别出来的是“7”,可以看到识别错了。
    在这里插入图片描述
    在这里插入图片描述
  1. 验证推理结果,额外手写了3个字符,未使用测试集里的手写字符验证,对了2个,错了1个;识别率有待提高,可能需要更多次的epoch。

后续

  • 下一篇章跟着视频进行手写字符识别的代码解析。

这篇关于深度学习手写字符识别:推理过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747182

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧