【动态规划题目讲解】AGC026D - Histogram Coloring

2024-02-25 23:28

本文主要是介绍【动态规划题目讲解】AGC026D - Histogram Coloring,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[ A G C 026 D ] H i s t o g r a m C o l o r i n g \mathrm{[AGC026D] Histogram\ Coloring} [AGC026D]Histogram Coloring

D e s c r i p t i o n \mathrm{Description} Description

给定 N N N 列的网格,每列高为 h i h_i hi,将每个格子染色成红色或蓝色,使得每个 2 × 2 2\times 2 2×2 的区域都恰好有两个蓝格子和两个红格子,求方案数。

S o l u t i o n \mathrm{Solution} Solution

为了小编书写方便,令 1 1 1 为红, 0 0 0 为蓝(反过来也无所谓)

简化版

思考一下如果 h i h_i hi 全部相等,怎么做呢?(比如说,给个 20 p t s 20\mathrm{pts} 20pts 的部分分)

那么,其实就相当于给定了一个矩形,此时对于矩形的最后一行进行分类讨论:

最后一行有 2 2 2 0 0 0,那么上一行对应位置只能填 2 2 2 1 1 1,对应这别的位置也能相应的填好

所以,发现其实是一个翻转操作,但是这里的前提是下面有一对连续的 0 0 0,那么才会固定上一行,那如果最后一行是 01 01 01 交替呢?

那么,上一行你可以发现有 2 2 2 种填法: 010101 … 010101\dots 010101 1010101 … 1010101\dots 1010101

这样对于每一行都会分成 2 2 2 种,那么最后的方案数应该就是 2 h i 2^{h_i} 2hi(最后一行也是 2 2 2 种)。

而对于第 1 1 1 种情况:底部的状态有 2 n 2^n 2n 种填法,而上面会固定,所以不会再有更多的状态

但是,这 2 2 2 种会算重,即 0101 … 0101\dots 0101 1010 … 1010\dots 1010 会被算 2 2 2 次,所以最终的方案数为 2 n + 2 h i − 2 2^n+2^{h_i}-2 2n+2hi2


那么,这是简化版的做法,不过可以借鉴简化版的思路来解决这道问题。

这道题无非就是 h i h_i hi 不相同了,比如说形状如下图所示:( h i h_i hi 可能为 0 0 0

那么,对于这个图,考虑到每次可以划分成一个矩形,考虑子问题,比如说:

只考虑到当前最矮的那个方块,那么下面其实就是一个矩形,然后上面就会分成 2 2 2 个部分,即为两个子问题,那么就可以设计 DP 了!较为自然的想到设 f l , r f_{l,r} fl,r 表示区间 l ∼ r l\sim r lr 的方案数,不过只设这些可以吗?其实是不可以的,你会发现还有划分的高度,所以还要存一维高度,以及当前是不是 01 01 01 交替。所以,总结一下,设 f l , r , h , 0 / 1 f_{l,r,h,0/1} fl,r,h,0/1 表示区间 l ∼ r l\sim r lr,当前划分高度为 h h h,是/不是 01 01 01 交替。( 0 0 0 表示是, 1 1 1 表示不是)

那么,考虑转移: f l , r , h , 0 = f l , p − 1 , h p , 0 × f p + 1 , r , h p , 0 × 2 h p − h f_{l,r,h,0}=f_{l,p-1,h_p,0}\times f_{p+1,r,h_p,0}\times 2^{h_p-h} fl,r,h,0=fl,p1,hp,0×fp+1,r,hp,0×2hph

其中 p p p 为当前最低方块的位置,即左边的方案数乘右边的方案数,由于划分出的矩形是 01 01 01 交替的,所以每行都有 2 2 2 种,总共就是 2 h p − h 2^{h_p-h} 2hph 种。

下面考虑不是 01 01 01 交替的转移:

如果左侧是 01 01 01 交替,右侧是 01 01 01 交替,那么总共有 6 6 6 种,因为中间 p p p 位置要想让区间 l ∼ r l\sim r lr 不是 01 01 01 交替,那么必须和左侧或右侧中有一个是相等的。(这里就不一一列举了)

如果左侧 01 01 01 交替,右侧不是 01 01 01 交替,那么左侧可以是 01 01 01 10 10 10 p p p 位置有 2 2 2 种选择,所以是 4 4 4 种。

如果左侧不是 01 01 01 交替,右侧是 01 01 01 交替,那么同理可得是 4 4 4 种。

如果左侧和右侧都不是 01 01 01 交替,那么只能 p p p 点取 0 / 1 0/1 0/1,是 2 2 2 种。

综上所述:令 l 0 = f l , p − 1 , h p , 0 , l 1 = f l , p − 1 , h p , 1 , r 0 = f p + 1 , r , h p , 0 , r 1 = f p + 1 , r , h p , 1 l_0=f_{l,p-1,h_p,0},l_1=f_{l,p-1,h_p,1},r_0=f_{p+1,r,h_p,0},r_1=f_{p+1,r,h_p,1} l0=fl,p1,hp,0,l1=fl,p1,hp,1,r0=fp+1,r,hp,0,r1=fp+1,r,hp,1

则, f l , r , h , 1 = 6 l 0 r 0 + 4 l 0 r 1 + 4 l 1 r 0 + 2 l 1 r 1 f_{l,r,h,1}=6l_0r_0+4l_0r_1+4l_1r_0+2l_1r_1 fl,r,h,1=6l0r0+4l0r1+4l1r0+2l1r1


A c c p e t e d C o d e \mathrm{Accpeted\ Code} Accpeted Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;
typedef unsigned long long ull;const int SIZE = 1e2 + 10, MOD = 1e9 + 7;int N;
int H[SIZE];int ksm(int a, int b, int p)
{int Result = 1;while (b){if (b & 1) Result = Result * a % p;a = a * a % p;b >>= 1;}return Result;
}
int DP(int l, int r, int h, int k)
{if (l > r) return 1;if (l == r) return k ? 0 : ksm(2, H[l] - h, MOD);int Min = 1e18, P;for (int i = l; i <= r; i ++)if (H[i] < Min) Min = H[i], P = i;if (!k) return DP(l, P - 1, H[P], 0) * DP(P + 1, r, H[P], 0) % MOD * ksm(2, H[P] - h, MOD) % MOD;if (P == l) return 2 * (DP(P + 1, r, H[P], 0) + DP(P + 1, r, H[P], 1)) % MOD;if (P == r) return 2 * (DP(l, P - 1, H[P], 0) + DP(l, P - 1, H[P], 1)) % MOD;int L0 = DP(l, P - 1, H[P], 0), L1 = DP(l, P - 1, H[P], 1), R0 = DP(P + 1, r, H[P], 0), R1 = DP(P + 1, r, H[P], 1);return (6 * L0 % MOD * R0 % MOD + 4 * L1 * R0 % MOD + 4 * L0 * R1 % MOD + 2 * L1 * R1 % MOD) % MOD;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> N;for (int i = 1; i <= N; i ++)cin >> H[i];cout << (DP(1, N, 0, 0) + DP(1, N, 0, 1)) % MOD << endl;return 0;
}

这篇关于【动态规划题目讲解】AGC026D - Histogram Coloring的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747025

相关文章

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模